{ "cells": [ { "cell_type": "markdown", "id": "d2ae45b0", "metadata": {}, "source": [ "# How to use Conformal Prediction" ] }, { "cell_type": "code", "execution_count": 81, "id": "57baf810", "metadata": {}, "outputs": [], "source": [ "import random\n", "\n", "random.seed(123)" ] }, { "cell_type": "markdown", "id": "92176d53", "metadata": {}, "source": [ "## An introducing Example" ] }, { "cell_type": "markdown", "id": "dce87679", "metadata": {}, "source": [ "### Dry Bean Data" ] }, { "cell_type": "code", "execution_count": 82, "id": "dbd60e35", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
nameroletypedemographicdescriptionunitsmissing_values
0AreaFeatureIntegerNoneThe area of a bean zone and the number of pixe...pixelsno
1PerimeterFeatureContinuousNoneBean circumference is defined as the length of...Noneno
2MajorAxisLengthFeatureContinuousNoneThe distance between the ends of the longest l...Noneno
3MinorAxisLengthFeatureContinuousNoneThe longest line that can be drawn from the be...Noneno
4AspectRatioFeatureContinuousNoneDefines the relationship between MajorAxisLeng...Noneno
5EccentricityFeatureContinuousNoneEccentricity of the ellipse having the same mo...Noneno
6ConvexAreaFeatureIntegerNoneNumber of pixels in the smallest convex polygo...Noneno
7EquivDiameterFeatureContinuousNoneEquivalent diameter: The diameter of a circle ...Noneno
8ExtentFeatureContinuousNoneThe ratio of the pixels in the bounding box to...Noneno
9SolidityFeatureContinuousNoneAlso known as convexity. The ratio of the pixe...Noneno
10RoundnessFeatureContinuousNoneCalculated with the following formula: (4piA)/...Noneno
11CompactnessFeatureContinuousNoneMeasures the roundness of an objectEd/Lno
12ShapeFactor1FeatureContinuousNoneNoneNoneno
13ShapeFactor2FeatureContinuousNoneNoneNoneno
14ShapeFactor3FeatureContinuousNoneNoneNoneno
15ShapeFactor4FeatureContinuousNoneNoneNoneno
16ClassTargetCategoricalNone(Seker, Barbunya, Bombay, Cali, Dermosan, Horo...Noneno
\n", "
" ], "text/plain": [ " name role type demographic \\\n", "0 Area Feature Integer None \n", "1 Perimeter Feature Continuous None \n", "2 MajorAxisLength Feature Continuous None \n", "3 MinorAxisLength Feature Continuous None \n", "4 AspectRatio Feature Continuous None \n", "5 Eccentricity Feature Continuous None \n", "6 ConvexArea Feature Integer None \n", "7 EquivDiameter Feature Continuous None \n", "8 Extent Feature Continuous None \n", "9 Solidity Feature Continuous None \n", "10 Roundness Feature Continuous None \n", "11 Compactness Feature Continuous None \n", "12 ShapeFactor1 Feature Continuous None \n", "13 ShapeFactor2 Feature Continuous None \n", "14 ShapeFactor3 Feature Continuous None \n", "15 ShapeFactor4 Feature Continuous None \n", "16 Class Target Categorical None \n", "\n", " description units missing_values \n", "0 The area of a bean zone and the number of pixe... pixels no \n", "1 Bean circumference is defined as the length of... None no \n", "2 The distance between the ends of the longest l... None no \n", "3 The longest line that can be drawn from the be... None no \n", "4 Defines the relationship between MajorAxisLeng... None no \n", "5 Eccentricity of the ellipse having the same mo... None no \n", "6 Number of pixels in the smallest convex polygo... None no \n", "7 Equivalent diameter: The diameter of a circle ... None no \n", "8 The ratio of the pixels in the bounding box to... None no \n", "9 Also known as convexity. The ratio of the pixe... None no \n", "10 Calculated with the following formula: (4piA)/... None no \n", "11 Measures the roundness of an object Ed/L no \n", "12 None None no \n", "13 None None no \n", "14 None None no \n", "15 None None no \n", "16 (Seker, Barbunya, Bombay, Cali, Dermosan, Horo... None no " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from ucimlrepo import fetch_ucirepo\n", "from sklearn.preprocessing import LabelEncoder\n", " \n", "# fetch dataset \n", "dry_bean_dataset = fetch_ucirepo(id=602) \n", " \n", "# data (as pandas dataframes) \n", "X = dry_bean_dataset.data.features \n", "y = dry_bean_dataset.data.targets.values.flatten()\n", "\n", "# Encode the classes to integers\n", "label_encoder = LabelEncoder()\n", "y = label_encoder.fit_transform(y)\n", " \n", "# variable information \n", "display(dry_bean_dataset.variables)" ] }, { "cell_type": "markdown", "id": "898b69f7", "metadata": {}, "source": [ "### Data Splitting" ] }, { "cell_type": "code", "execution_count": 92, "id": "a017552b", "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "\n", "# Training and remaining sets\n", "X_temp, X_train, y_temp, y_train = train_test_split(X, y, test_size=10000, random_state=42)\n", "\n", "# Test and remaining sets\n", "X_temp2, X_test, y_temp2, y_test = train_test_split(X_temp, y_temp, test_size=1000, random_state=42)\n", "\n", "# Calibration and conformal prediction sets\n", "X_new, X_calib, y_new, y_calib = train_test_split(X_temp2, y_temp2, test_size=1000, random_state=42)\n", "\n", "# X_train, y_train: Training data\n", "# X_test, y_test: Test data\n", "# X_calib, y_calib: Calibration data\n", "# X_new, y_new: Conformal prediction data" ] }, { "cell_type": "markdown", "id": "02a51c63", "metadata": {}, "source": [ "### Modeling" ] }, { "cell_type": "markdown", "id": "12356469", "metadata": {}, "source": [ "#### Training" ] }, { "cell_type": "code", "execution_count": 93, "id": "6d1f9797", "metadata": {}, "outputs": [], "source": [ "from sklearn.naive_bayes import GaussianNB\n", "\n", "model = GaussianNB().fit(X_train, y_train)" ] }, { "cell_type": "markdown", "id": "4b2c217c", "metadata": {}, "source": [ "#### Testing" ] }, { "cell_type": "code", "execution_count": 94, "id": "4cde4cbb", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy: 0.76\n" ] } ], "source": [ "from sklearn.metrics import accuracy_score\n", "\n", "y_pred = model.predict(X_test)\n", "accuracy = accuracy_score(y_test, y_pred)\n", "\n", "print(f\"Accuracy: {accuracy:.2f}\")" ] }, { "cell_type": "code", "execution_count": 95, "id": "f6c57c48", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coverage: 0.89\n", "Avg. set size: 1.4\n" ] } ], "source": [ "import numpy as np\n", "\n", "# Heuristic class \"probabilities\"\n", "class_probs_new = model.predict_proba(X_new)\n", "\n", "# Prediction sets\n", "prediction_sets = []\n", "\n", "for prob in class_probs_new:\n", " sorted_classes = np.argsort(prob)[::-1] # Sort classes by heuristic class \"probabilities\" in descending order\n", " cumulative_prob = 0\n", " prediction_set = []\n", " for cls in sorted_classes:\n", " if cumulative_prob < 0.95: # 95% for alpha=0.05\n", " prediction_set.append(cls)\n", " cumulative_prob += prob[cls]\n", " else:\n", " break\n", " prediction_sets.append(prediction_set)\n", "\n", "# Coverage probability\n", "matches = [true_label in pred_set for true_label, pred_set in zip(y_new, prediction_sets)]\n", "coverage = np.mean(matches)\n", "\n", "# Average prediction set size\n", "avg_set_size = np.mean([len(pred_set) for pred_set in prediction_sets])\n", "\n", "# Print the results\n", "print(f'Coverage: {coverage:.2f}')\n", "print(f'Avg. set size: {avg_set_size:.1f}')" ] }, { "cell_type": "markdown", "id": "9244a528", "metadata": {}, "source": [ "## Score Method" ] }, { "cell_type": "markdown", "id": "75d3415e", "metadata": {}, "source": [ "### Non-Conformity Score" ] }, { "cell_type": "code", "execution_count": 96, "id": "7d8ef464", "metadata": {}, "outputs": [], "source": [ "# Heuristic class \"probabilities\"\n", "predictions = model.predict_proba(X_calib)\n", "\n", "# Extract the predicted probabilities for each sample's true class\n", "prob_true_class = predictions[np.arange(len(X_calib)), y_calib]\n", "\n", "# Compute the uncertainty score (larger values indicate higher uncertainty)\n", "scores = 1 - prob_true_class" ] }, { "cell_type": "markdown", "id": "8b43dec0", "metadata": {}, "source": [ "### Estimating the Threshold " ] }, { "cell_type": "code", "execution_count": 97, "id": "20919666", "metadata": {}, "outputs": [], "source": [ "# Error rate\n", "alpha = 0.05\n", "\n", "# Calculate the empirical quantile level\n", "q_level = np.ceil((len(scores) + 1) * (1 - alpha)) / len(scores)\n", "\n", "# Compute the quantile threshold from the uncertainty scores\n", "qhat = np.quantile(scores, q_level, interpolation='higher')" ] }, { "cell_type": "markdown", "id": "dd2b3258", "metadata": {}, "source": [ "### Plot" ] }, { "cell_type": "code", "execution_count": 98, "id": "526e2fda", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwUAAAHUCAYAAABrmITaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcIklEQVR4nO3dd3gU1f7H8c+m90BCSAiEhBKQLsVCkw4/iiDKFUURBK96EQSpYgULCFxRFAVrABXwXgWuCgKRJgh6QUBpUpQq4UYBSS8k5/dHzOKShBQ22YR9v55nHmfPnJn5zswS57vnzBmLMcYIAAAAgNNycXQAAAAAAByLpAAAAABwciQFAAAAgJMjKQAAAACcHEkBAAAA4ORICgAAAAAnR1IAAAAAODmSAgAAAMDJkRQAAAAATo6kAIAkacGCBbJYLNbJy8tLYWFh6tSpk6ZPn674+Pg860yZMkUWi6VY+0lJSdGUKVO0cePGYq2X376ioqLUp0+fYm2nMIsXL9arr76a7zKLxaIpU6bYdX/2tm7dOrVq1Uq+vr6yWCxasWJFvvWOHTtmvdZLly7Nszz3fP/++++lHHH5smvXLnXo0EGBgYGyWCwFfhfK2saNG2WxWGz+3axatapUvo+ZmZl66623dMMNNygoKEg+Pj6KjIxUv379tHz5crvvD0D5QFIAwEZMTIy2bdum2NhYvfHGG7r++us1Y8YMNWjQQF999ZVN3QceeEDbtm0r1vZTUlI0derUYicFJdlXSVwpKdi2bZseeOCBUo+hpIwxuvPOO+Xu7q7PPvtM27ZtU4cOHQpd78knn1RmZmYZRFj+DRs2THFxcVq6dKm2bdumu+66y9EhSZJatGihbdu2qUWLFtayVatWaerUqXbf1+DBgzVq1Ch16tRJH374oT7//HM99dRTcnNz05o1a+y+PwDlg5ujAwBQvjRu3FitWrWyfr7jjjv02GOPqV27drr99tt1+PBhhYaGSpJq1KihGjVqlGo8KSkp8vHxKZN9Febmm2926P4Lc/r0aZ07d079+/dXly5dirROz5499eWXX2r+/PkaNWpUKUdY/u3du1d///vf1bNnT7tsLzMzUxaLRW5uV/e/24CAgDL5/h09elQff/yxnnnmGZuEo0uXLvr73/+u7OzsUo8hlzFGaWlp8vb2LrN9As6MlgIAhapZs6ZefvllJSYm6q233rKW59elZ/369erYsaOCg4Pl7e2tmjVr6o477lBKSoqOHTumkJAQSdLUqVOt3VeGDh1qs72dO3dqwIABqly5surUqVPgvnItX75cTZs2lZeXl2rXrq3XXnvNZnlu16hjx47ZlF/eJaNjx45auXKljh8/btOVKld+3Yf27t2rfv36qXLlyvLy8tL111+vhQsX5rufJUuW6Mknn1R4eLgCAgLUtWtXHTx4sOAT/xdbtmxRly5d5O/vLx8fH7Vp00YrV660Lp8yZYo1aZo0aZIsFouioqIK3W7nzp3Vo0cPPf/880pMTCy0/vvvv69mzZrJy8tLQUFB6t+/vw4cOGBTZ+jQofLz89ORI0fUq1cv+fn5KSIiQuPGjVN6enqRjjc7O1uvv/66rr/+enl7e6tSpUq6+eab9dlnn9nUmTlzpq677jp5enqqatWquu+++3Tq1CmbbXXs2FGNGzfW9u3b1b59e/n4+Kh27dp66aWXrDe5ud+Rixcvat68eXmufXGu8wcffKBx48apevXq8vT01JEjR6zn5KefflKPHj3k6+uratWq6aWXXpIkffvtt2rXrp18fX1Vr169Ared+10dOnSo3njjDUmy+a4eO3ZMXbp00XXXXSdjjM02jDGqW7euevfuXeB5P3v2rCSpWrVq+S53cbG9bfjjjz80btw41a5d23oNevXqpZ9++sla59y5cxoxYoSqV68uDw8P1a5dW08++WSe74LFYtHIkSM1f/58NWjQQJ6entbzcPjwYQ0aNEhVq1aVp6enGjRoYD3+XNnZ2XrhhRdUv35963emadOmmjNnToHHC+AvDAAYY2JiYowks3379nyXJyUlGVdXV9OlSxdr2bPPPmv++mfk6NGjxsvLy3Tr1s2sWLHCbNy40Xz00Udm8ODB5vz58yYtLc2sXr3aSDLDhw8327ZtM9u2bTNHjhyx2V5kZKSZNGmSiY2NNStWrMh3X8YYExkZaapXr25q1qxp3n//fbNq1Spzzz33GElm1qxZeY7t6NGjNutv2LDBSDIbNmwwxhizb98+07ZtWxMWFmaNbdu2bdb6ksyzzz5r/fzTTz8Zf39/U6dOHbNo0SKzcuVKc/fddxtJZsaMGXn2ExUVZe655x6zcuVKs2TJElOzZk0THR1tLl68eMVrs3HjRuPu7m5atmxpPv74Y7NixQrTvXt3Y7FYzNKlS40xxpw8edIsW7bMSDKjRo0y27ZtMzt37ixwm0ePHrWep927dxuLxWKefvpp6/Lc8/3bb79Zy6ZNm2YkmbvvvtusXLnSLFq0yNSuXdsEBgaaQ4cOWesNGTLEeHh4mAYNGph//vOf5quvvjLPPPOMsVgsZurUqVc81lyDBw82FovFPPDAA+Y///mP+fLLL82LL75o5syZY63z4IMPGklm5MiRZvXq1Wb+/PkmJCTERERE2MTdoUMHExwcbKKjo838+fNNbGysGTFihJFkFi5caIwxJj4+3mzbts1IMgMGDLC59sW9ztWrVzcDBgwwn332mfniiy/M2bNnbc7JnDlzTGxsrLn//vuNJDN58mRTr149895775k1a9aYPn36GElmx44debad+109cuSIGTBggJFk811NS0sz//nPf4wkExsba3NOV65caSSZlStXFnjek5KSTKVKlUxYWJh566238vyb+auEhATTqFEj4+vra5577jmzZs0a8+mnn5rRo0eb9evXG2OMSU1NNU2bNjW+vr7mn//8p1m7dq15+umnjZubm+nVq5fN9nLPXdOmTc3ixYvN+vXrzd69e82+fftMYGCgadKkiVm0aJFZu3atGTdunHFxcTFTpkyxrj99+nTj6upqnn32WbNu3TqzevVq8+qrr9rUAVAwkgIAxpjCkwJjjAkNDTUNGjSwfr78Rv2TTz4xkszu3bsL3MZvv/2W5+b68u0988wzBS77q8jISGOxWPLsr1u3biYgIMAkJyfbHFthSYExxvTu3dtERkbmG/vlcd91113G09PTnDhxwqZez549jY+Pj/njjz9s9nP5TdC//vUv603dldx8882matWqJjEx0Vp28eJF07hxY1OjRg2TnZ1tjLG90S/M5XXvuece4+vra+Li4owxeZOC8+fPG29v7zzHcOLECePp6WkGDRpkLRsyZIiRZP71r3/Z1O3Vq5epX79+obF9/fXXRpJ58sknC6xz4MABI8mMGDHCpvy7774zkswTTzxhLevQoYORZL777jubug0bNjQ9evSwKZNkHnnkEZuy4l7nW265JU+8uefk008/tZZlZmaakJAQI8kmgTt79qxxdXU1Y8eOtZbl91195JFH8vybMMaYrKwsU7t2bdOvX7888dapU8f6fSnIypUrTZUqVYwkI8kEBwebv/3tb+azzz6zqffcc8/lm3z81fz58/P9LsyYMcNIMmvXrrWWSTKBgYHm3LlzNnV79OhhatSoYS5cuGBTPnLkSOPl5WWt36dPH3P99ddf8dgAFIzuQwCKzFzWHeFy119/vTw8PPTggw9q4cKF+uWXX0q0nzvuuKPIdRs1aqRmzZrZlA0aNEgJCQnauXNnifZfVOvXr1eXLl0UERFhUz506FClpKTkeTC6b9++Np+bNm0qSTp+/HiB+0hOTtZ3332nAQMGyM/Pz1ru6uqqwYMH69SpU0XugnQlL7zwgjIzMwt8cHXbtm1KTU21dvXKFRERoc6dO2vdunU25RaLRbfeeqtNWdOmTW2ONSsrSxcvXrROuV15vvzyS0nSI488UmC8GzZskKQ88dx4441q0KBBnnjCwsJ04403XjGeghT3Ohf0/bVYLOrVq5f1s5ubm+rWratq1aqpefPm1vKgoCBVrVq1SLHlx8XFRSNHjtQXX3yhEydOSJJ+/vlnrV69WiNGjCh0xLBevXrpxIkTWr58ucaPH69GjRppxYoV6tu3r0aOHGmt9+WXX6pevXrq2rVrgdtav369fH19NWDAAJvy3Ot2+XXq3LmzKleubP2clpamdevWqX///vLx8bH5vvTq1UtpaWn69ttvJeVc+x9++EEjRozQmjVrlJCQUPjJAmBFUgCgSJKTk3X27FmFh4cXWKdOnTr66quvVLVqVT3yyCOqU6eO6tSpU+w+vQX1Z85PWFhYgWW5/aNLy9mzZ/ONNfccXb7/4OBgm8+enp6SpNTU1AL3cf78eRljirWfkoiKitKIESP07rvv6vDhw3mWX6mveXh4eJ4YfHx85OXlZVPm6emptLQ06+cuXbrI3d3dOg0bNkyS9Ntvv8nV1TXfa1vSeC4/97nxXOnc/3VfxTn/BX1/8zsnHh4eCgoKylPXw8PD5lwV17Bhw+Tt7a358+dLkt544w15e3tbz3FhvL29ddttt2nWrFnatGmTjhw5ooYNG+qNN97Qvn37JOVcp8Ie/j979qzCwsLyJCJVq1aVm5tboefu7Nmzunjxol5//XWb74q7u7s1wcodNnfy5Mn65z//qW+//VY9e/ZUcHCwunTpoh07dhTpmAFnR1IAoEhWrlyprKwsdezY8Yr12rdvr88//1wXLlzQt99+q9atW2vMmDH5joVfkOK8++DMmTMFluXeCObeiF3+YOPVjsEfHBysuLi4POWnT5+WJFWpUuWqti9JlStXlouLS6nvR5Keeuop+fj46IknnsizLPdcFhRHSWJ46623tH37duuU+xB3SEiIsrKy8r22pRnPlfZVnPNf3Hd3lIbAwEANGTJE7777rs6dO6eYmBgNGjRIlSpVKtH2atasqQcffFCSrElBSEhInoe6LxccHKz//e9/eVoZ4+PjdfHixULPXeXKleXq6qqhQ4fafFf+OuUmB25ubho7dqx27typc+fOacmSJTp58qR69OihlJSUEh034ExICgAU6sSJExo/frwCAwP10EMPFWkdV1dX3XTTTdYRQnK78hTl1/Hi2Ldvn3744QebssWLF8vf3986pnvuKDw//vijTb2/jmSTq6i/Hks5v3SvX7/eenOYa9GiRfLx8bHLEJK+vr666aabtGzZMpu4srOz9eGHH6pGjRqqV6/eVe9HyrmBmzRpkj755BP997//tVnWunVreXt768MPP7QpP3XqlLV7TXHVr19frVq1sk651yl3ONB58+YVuG7nzp0lKU8827dv14EDB0oUT0HK4jqXRGH/lh599FH9/vvvGjBggP744w+brj8FSUxMVFJSUr7LckeZym0h6dmzpw4dOqT169cXuL0uXbooKSkpz0v0Fi1aZF1+JT4+PurUqZN27dqlpk2b2nxfcqf8WoEqVaqkAQMG6JFHHtG5c+fyjDwGIC/eUwDAxt69e619duPj47V582bFxMTI1dVVy5cvtw4pmp/58+dr/fr16t27t2rWrKm0tDS9//77kmTtd+zv76/IyEj95z//UZcuXRQUFKQqVaoUafjM/ISHh6tv376aMmWKqlWrpg8//FCxsbGaMWOGfHx8JEk33HCD6tevr/Hjx+vixYuqXLmyli9fri1btuTZXpMmTbRs2TLNmzdPLVu2lIuLi817G/7q2Wef1RdffKFOnTrpmWeeUVBQkD766COtXLlSM2fOVGBgYImO6XLTp09Xt27d1KlTJ40fP14eHh568803tXfvXi1ZssSuv0yPGTNGb7zxhrVff65KlSrp6aef1hNPPKH77rtPd999t86ePaupU6fKy8tLzz77rN1iaN++vQYPHqwXXnhB//vf/9SnTx95enpq165d8vHx0ahRo1S/fn09+OCDev311+Xi4qKePXvq2LFjevrppxUREaHHHnvMbvGU1XUuriZNmkiSZsyYoZ49e8rV1VVNmzaVh4eHJKlevXr6v//7P3355Zdq165dnmdv8nPw4EH16NFDd911lzp06KBq1arp/PnzWrlypd5++2117NhRbdq0kZTzXfn444/Vr18/Pf7447rxxhuVmpqqTZs2qU+fPurUqZPuu+8+vfHGGxoyZIiOHTumJk2aaMuWLZo2bZp69ep1xecRcs2ZM0ft2rVT+/bt9Y9//ENRUVFKTEzUkSNH9Pnnn1uTkltvvdX6npWQkBAdP35cr776qiIjIxUdHV3S0ww4Dwc/6AygnMgdoSd38vDwMFWrVjUdOnQw06ZNM/Hx8XnWuXxEoG3btpn+/fubyMhI4+npaYKDg02HDh3yjFry1VdfmebNmxtPT08jyQwZMsRme38dTrKgfRmTM/pQ7969zSeffGIaNWpkPDw8TFRUlJk9e3ae9Q8dOmS6d+9uAgICTEhIiBk1apR1iMa/juhy7tw5M2DAAFOpUiVjsVhs9ql8Rk3as2ePufXWW01gYKDx8PAwzZo1MzExMTZ1ckeO+fe//21TnjsC0OX187N582bTuXNn4+vra7y9vc3NN99sPv/883y3V5LRh/7q7bfftn4PLr8W7777rmnatKnx8PAwgYGBpl+/fmbfvn02dYYMGWJ8fX3zbDe/a1iQrKws88orr5jGjRtb99W6dWubY87KyjIzZsww9erVM+7u7qZKlSrm3nvvNSdPnrTZVocOHUyjRo3y7GPIkCF5RppSPqMPGXN11zl3X/mdk4Jiy/1uX77tv35X09PTzQMPPGBCQkKs39XLR9hasGCBkWQdurYw58+fNy+88ILp3LmzqV69uvHw8DC+vr7m+uuvNy+88IJJSUnJU3/06NGmZs2axt3d3VStWtX07t3b/PTTT9Y6Z8+eNQ8//LCpVq2acXNzM5GRkWby5MkmLS3NZlsFnXtjcr6vw4YNM9WrVzfu7u4mJCTEtGnTxrzwwgvWOi+//LJp06aNqVKlivHw8DA1a9Y0w4cPN8eOHSvSsQPOzmJMIcOJAACACumOO+7Qt99+q2PHjsnd3d3R4QAox+g+BADANSQ9PV07d+7Uf//7Xy1fvlyzZ88mIQBQKFoKAAC4hhw7dky1atVSQECABg0apLlz58rV1dXRYQEo50gKAAAAACfHkKQAAACAkyMpAAAAAJwcSQEAAADg5Bh9SDlvBj19+rT8/f3LxevpAQAAgKtljFFiYqLCw8Pl4nLltgCSAkmnT59WRESEo8MAAAAA7O7kyZOqUaPGFeuQFEjy9/eXlHPCAgICHBwNAAAAKrzsbOnkyZz5iAipkF/qS0NCQoIiIiKs97pXQlIgWbsMBQQEkBQAAADg6iUnS02b5swnJUm+vg4LpSjd43nQGAAAAHByJAUAAACAkyMpAAAAAJwczxQAAACnZozRxYsXlZWV5ehQcC1JT5ciIy/Nu7qWym7c3d3laodtkxQAAACnlZGRobi4OKWkpDg6FFxrsrOl+fNz5uPiSm30IYvFoho1asjPz++qtkNSAAAAnFJ2draOHj0qV1dXhYeHy8PDg5eYwn6ysqTU1Jz5qKhSaSkwxui3337TqVOnFB0dfVUtBiQFAADAKWVkZCg7O1sRERHy8fFxdDi41mRnSyEhOfPe3qXWUhASEqJjx44pMzOTpAAAAKCkXBzwUik4AReXS88UlCJ7tW7xrwAAAABwcrQUAAAAAPZmjHTxYs68m5tUzp9XoaUAAAAAsLfsbOmHH3Km7GxHR1MoWgoAAAAuU5ajEBljymxfJZWRkSEPDw9Hh4FSREsBAABABfTJJ5+oSZMm8vb2VnBwsLp27ark5GRJOcOtzpgxQ3Xr1pWnp6dq1qypF198UZKUnp6uRx99VFWrVpWXl5fatWun7du322y7Y8eOGjlypMaOHasqVaqoW7duknISmJkzZ6p27dry9vZWs2bN9MknnxQppqLIzs7WtGnTFB0dLS8vL4WGhmrw4MFXe6pQBLQUAAAAVDBxcXG6++67NXPmTPXv31+JiYnavHmztdVh8uTJeuedd/TKK6+oXbt2iouL008//SRJmjhxoj799FMtXLhQkZGRmjlzpnr06KEjR44oKCjIuo+FCxfqH//4h7755hvrdp966iktW7ZM8+bNU3R0tL7++mvde++9CgkJUb169a4YU1FMnz5dS5Ys0dtvv63atWvr1KlT1rhRuiymIrRZlbKEhAQFBgbqwoULCggIcHQ4AACgDKSlpeno0aOqVauWvLy8bJaV9+5DO3fuVMuWLXXs2DFFXjbsZWJiokJCQjR37lw98MADNsuSk5NVuXJlLViwQIMGDZIkZWZmKioqSmPGjNGECRMk5bQUXLhwQbt27bJZt0qVKlq/fr1at25tLX/ggQeUkpKi8ePHFxhTUd1yyy1q3bq1ZsyYkWfZV199pT179uixxx4r0bbLXFaWlHv+mjcvlZeXSVf+HhfnHpeWgnKioD8+5GwAAOByzZo1U5cuXdSkSRP16NFD3bt314ABA1S5cmUdOHBA6enp6tKlS571fv75Z2VmZqpt27bWMnd3d9144406cOCATd1WrVrZfN6/f7/S0tKsXYlyZWRkqHnz5leMqaj69u2rSZMmadeuXbr99tt15513Wlsvunbtqq5duxZ5WygenikAAACoYFxdXRUbG6svv/xSDRs21Ouvv6769evr6NGj8vb2LnC93B8bL/8x0hiTp8zX19fmc/afI+isXLlSu3fvtk779+/XJ598csWYimr8+PE6cOCAunbtqtdff11169a1rt+zZ888iQvsh6QAAACgArJYLGrbtq2mTp2qXbt2ycPDQ8uXL1d0dLS8vb21bt26POvUrVtXHh4e2rJli7UsMzNTO3bsUIMGDa64v4YNG8rT01MnTpxQ3bp1baaIiIgrxlQc9erV08SJE7Vz506lpKRo//79kqTDhw8rOjq6WNtyKItFCg7Omcr5Owokug8BAABUON99953WrVun7t27q2rVqvruu+/022+/qUGDBvLy8tKkSZM0ceJEeXh4qG3btvrtt9+0b98+DR8+XP/4xz80YcIEBQUFqWbNmpo5c6ZSUlI0fPjwK+7T399f48eP12OPPabs7Gy1a9dOCQkJ2rp1q/z8/HTdddcVGFNRzJw5U6Ghobrhhhvk6uqqd999V5UrV1abNm104cIF+fn5yc2tAt26urhItWo5Oooiq0BnFgAAAJIUEBCgr7/+Wq+++qoSEhIUGRmpl19+WT179pQkPf3003Jzc9Mzzzyj06dPq1q1anr44YclSS+99JKys7M1ePBgJSYmqlWrVlqzZk2R+v4///zzqlq1qqZPn65ffvlFlSpVUosWLfTEE08UGtOCBQt0//33F/i8ZFpamqZNm6YTJ07Iz89Pbdu21fr161W5cmV98803atSokZ3OHvLD6EMqH6MP8aAxAABl60qjtsD+pkyZoo0bN2rjxo3FXvett97SuXPnNHnyZPsHVlqMufQmYxeXUutCZK/Rh3imAAAAAKVuzZo1mjlzZonW3bdvnxo3bmzniEpZdnbOkKS7dl1KDsoxug8BAACg1G3btq3E67722mt2jAT5oaUAAAAAcHIkBQAAAICTIykAAAAAnBxJAQAAAODkSAoAAAAAJ8foQwAAAIC9WSxS7gvhSukdBfZEUgAAAADYm4uLVKeOo6MoMroPAQAAAE6OpAAAAABwciQFAAAAqFDOnz+vqVOnKi4uztGhFCwrS9qxI2fKynJ0NIXimQIAAABUKI8++qjOnz+vXbt2acWKFY4O55pASwEAAAAqjM8++0xJSUn64osvVKlSJX300UeODumaQFIAAAAAu+vYsaPGjBlT4OeS6tu3r5YvXy5JWrBgge65556r3iZICgAAAHAVCrrZX7ZsmZ5//vmyD6gI3nzzTdWqVUteXl5q2bKlNm/eXOg6iYmJGjNmjCIjI+Xt7a02bdpo+/btBdfx81ObYcO0fd8+6/KLFy/qqaeeUq1ateTt7a3atWvrueeeU3Z2trVOVFSULBZLnumRRx6x3wnIB0kBAAAA7C4oKEj+/v6ODiOPjz/+WGPGjNGTTz6pXbt2qX379urZs6dOnDhxxfUeeOABxcbG6oMPPtCePXvUvXt3de3aVb/++mv+dXbvVvebb1bXRx6x1pkxY4bmz5+vuXPn6sCBA5o5c6ZmzZql119/3bqN7du3Ky4uzjrFxsZKkv72t7+Vwtm4hKQAAACgAkpOTtZ9990nPz8/VatWTS+//LLNr/ZRUVF69dVXbda5/vrrNWXKFOvn1atXq127dqpUqZKCg4PVp08f/fzzzzbrdOzYUY8++qgmTpyooKAghYWFWbcxdOhQbdq0SXPmzLH+on3s2DHrelfqLmSM0cyZM1W7dm15e3urWbNm+uSTTwo97p9++kmdOnWSl5eX6tWrp9WrV8vFxUXff/99oetK0uzZszV8+HA98MADatCggV599VVFRERo3rx5Ba6TmpqqTz/9VDNnztQtt9yiunXrasqUKapVq5Z1vXzrPPigaoWHa978+ZKkbdu2qV+/furdu7eioqI0YMAAde/eXTt27LDuKyQkRGFhYdbpiy++UJ06ddShQ4ciHV9JkRQAAABUQBMmTNCGDRu0fPlyrV27Vhs3bizyjXGu5ORkjR07Vtu3b9e6devk4uKi/v3723RnkaSFCxfK19dX3333nWbOnKnnnntOsbGxmjNnjlq3bq2///3v1l+2IyIiirTvp556SjExMZo3b5727dunxx57TPfee682bdpU4DoHDx7UjTfeqFatWmnfvn2aNWuW7rvvPrm4uKhRo0ZasGCBLBZLgetnZGTo+++/V/fu3W3Ku3fvrq1btxa43sWLF5WVlSUvLy+bcm9vb23ZsiX/OhaLFBgob19fbflz2+3atdO6det06NAhSdIPP/ygLVu2qFevXgXG++GHH2rYsGFXPC57YEhSAACAyyUnF7zM1VX6683hleq6uEje3leu6+tb7PCSkpL03nvvadGiRerWrZuknBv3GjVqFGs7d9xxh83n9957T1WrVtX+/fvVuHFja3nTpk317LPPSpKio6M1d+5crVu3Tt26dZOHh4d8fHwUFhZW5P0mJydr9uzZWr9+vVq3bi1Jql27trZs2aK33nqrwF/FH330Ud1xxx2aNWuWJKlOnTpavHix9u7dKy8vLwUGBqp+/foF7vf3339XVlaWQkNDbcpDQ0N15syZAtfz9/dX69at9fzzz6tBgwYKDQ3VkiVL9N133yk6OrrgOt99p+9++MFaZ9KkSbpw4YKuu+46ubq6KisrSy+++KLuvvvufPe7YsUK/fHHHxo6dGiBsdkLLQUAAACX8/MreLrsRlpVqxZct2dP27pRUXnrlMDPP/+sjIwM6w21lNOH/0o3xAVtZ9CgQapdu7YCAgJUq1YtScrTv75p06Y2n6tVq6b4+PgSxS5J+/fvV1pamrp16yY/Pz/rtGjRojzdl3KdPHlSa9eu1WOPPWZT7uHhoWbNmkmS+vfvr59++qnQ/V/+q7sxptBf4j/44AMZY1S9enV5enrqtdde06BBg+Tq6lrkOh9//LE+/PBDLV68WDt37tTChQv1z3/+UwsXLsx3n++995569uyp8PDwQo/patFSAAAAUMEYYwqt4+LikqdeZmamzedbb71VEREReueddxQeHq7s7Gw1btxYGRkZNvXc3d1tPlssljxdjIojd92VK1eqevXqNss8PT3zXWfnzp1yd3dXw4YNbcr37NmjQYMGFWm/VapUkaura55Wgfj4+DytB5erU6eONm3apOTkZCUkJKhatWoaOHCgNZEqSp0JEybo8ccf11133SVJatKkiY4fP67p06dryJAhNvs7fvy4vvrqKy1btqxIx3a1SAoAAAAul5RU8LK//DIsSbrSL+Yul3XK+PMh3KtVt25dubu769tvv1XNmjUlSefPn9ehQ4esXW9CQkIUFxdnXSchIUFHjx61fj579qwOHDigt956S+3bt5cka//44vDw8FBWVlax1mnYsKE8PT114sSJIj9A6+LioqysLF28eFFubjm3sGvWrNEPP/ygGTNmFDnWli1bKjY2Vv3797eWx8bGql+/fkXahq+vr3x9fXX+/HmtWbNGM2fOzL+Ol5fOb9yoNatWaeaf3Z1SUlLkctl3wtXVNd8EKyYmRlWrVlXv3r2LFNfVIikAAAC4XHH6+ZdW3Svw8/PT8OHDNWHCBAUHBys0NFRPPvmkzQ1n586dtWDBAt16662qXLmynn76aZuuLpUrV1ZwcLDefvttVatWTSdOnNDjjz9e7FiioqL03Xff6dixY/Lz81NQUFCeG9/L+fv7a/z48XrssceUnZ2tdu3aKSEhQVu3bpWfn1+eX80lqWXLlnJ3d9fkyZM1atQo7dq1SxMnTpQka/eh5cuXa/LkyVfsQjR27FgNHjxYrVq1UuvWrfX222/rxIkTevjhh6115s6dq+XLl2vdunXWsjVr1sgYo/r16+vIkSOaMGGC6tevr/vvvz//OgcPasKjj6p+ZKTu//OZgFtvvVUvvviiatasqUaNGmnXrl2aPXu2hg0bZhNjdna2YmJiNGTIEGsCVNpICgAAACqgWbNmKSkpSX379pW/v7/GjRunCxcuWJdPnjxZv/zyi/r06aPAwEA9//zzNi0FLi4uWrp0qR599FE1btxY9evX12uvvaaOHTsWK47x48dryJAhatiwoVJTU3X06FFFRUUVut7zzz+vqlWravr06frll19UqVIltWjRQk888US+9cPDw/Xuu+9q8uTJeuedd9SzZ089/PDD+uc//2l9yPnChQs6ePDgFfc7cOBAnT17Vs8995zi4uLUuHFjrVq1SpGRkdY6v//+e55nGy5cuKDJkyfr1KlTCgoK0h133KEXX3zRpmtVnjrt2+vFESOsdV5//XU9/fTTGjFihOLj4xUeHq6HHnpIzzzzjM2+vvrqK504cSJPslCaLKYondKucQkJCQoMDNSFCxcUEBDgkBgKeriFywMAQOlIS0vT0aNHrW+2vRZ07NhR119/fZ73E1yrJk6cqB9++EFr1qxxdCh5ZWVJu3blzDdvnrfbmZ1c6XtcnHtcRh8CAABAhfTjjz9auw7h6pAUAAAAoELas2cPSYGd8EwBAADANWLjxo2ODqFM/frrr44O4ZpBUgAAAADYm8Ui+ftfmi/nyk33oenTp8tisWjMmDHWMmOMpkyZovDwcHl7e6tjx47at2+fzXrp6ekaNWqUqlSpIl9fX/Xt21enTp0q4+gBAACAv3BxkerXz5kKGaK1PCgXEW7fvl1vv/12nldoz5w5U7Nnz9bcuXO1fft2hYWFqVu3bkpMTLTWGTNmjJYvX66lS5dqy5YtSkpKUp8+fYr9Eg0AAADAWTk8KUhKStI999yjd955R5UrV7aWG2P06quv6sknn9Ttt9+uxo0ba+HChUpJSdHixYsl5YwF+9577+nll19W165d1bx5c3344Yfas2ePvvrqK0cdEgAAAFChODwpeOSRR9S7d2917drVpvzo0aM6c+aMunfvbi3z9PRUhw4dtHXrVknS999/r8zMTJs64eHhaty4sbVOftLT05WQkGAzAQAAAHaTlSXt3p0zVYAeLA590Hjp0qXauXOntm/fnmfZmTNnJEmhoaE25aGhoTp+/Li1joeHh00LQ26d3PXzM336dE2dOvVqwwcAANeA7OxsR4eAa9XFi6W+C3u96NZhScHJkyc1evRorV279opvEbz8Tb/GmALf/lvUOpMnT9bYsWOtnxMSEhQREVHEyAEAwLXAw8NDLi4uOn36tEJCQuTh4VHoPQZQZH9tHUhLK5U3Ghtj9Ntvv8liscjd3f2qtuWwpOD7779XfHy8WrZsaS3LysrS119/rblz5+rgwYOScloDqlWrZq0THx9vbT0ICwtTRkaGzp8/b9NaEB8frzZt2hS4b09PT3l6etr7kAAAQAXi4uKiWrVqKS4uTqdPn3Z0OLjWZGdLv/+eM3/sWKmNQGSxWFSjRg25XmXS4bCkoEuXLtqzZ49N2f3336/rrrtOkyZNUu3atRUWFqbY2Fg1b95ckpSRkaFNmzZpxowZkqSWLVvK3d1dsbGxuvPOOyVJcXFx2rt3r2bOnFm2BwQAACocDw8P1axZUxcvXmTkQthXSorUu3fO/M6dko9PqezG3d39qhMCyYFJgb+/vxo3bmxT5uvrq+DgYGv5mDFjNG3aNEVHRys6OlrTpk2Tj4+PBg0aJEkKDAzU8OHDNW7cOAUHBysoKEjjx49XkyZN8jy4DAAAkJ/crhdX2/0CsJGVJf35HKw8PaUrdJcvD8r1G40nTpyo1NRUjRgxQufPn9dNN92ktWvXyj/37XCSXnnlFbm5uenOO+9UamqqunTpogULFtglYwIAAACcgcXY65HlCiwhIUGBgYG6cOGCAgICHBJDQQ82cXkAAAAqoNRU6ZZbcua//lry9i7zEIpzj1uuWwoAAACACsnbW8pn2P3yyuEvLwMAAADgWCQFAAAAgJMjKQAAAADsLSVFiorKmVJSHB1NoXimAAAAALA3Yy4NSVoBBo6hpQAAAABwciQFAAAAgJMjKQAAAACcHEkBAAAA4ORICgAAAAAnx+hDAAAAgL1ZLFLDhpfmyzmSAgAAAMDefHykffscHUWR0X0IAAAAcHIkBQAAAICTIykAAAAA7C0lRWrUKGdKSXF0NIXimQIAAADA3oyR9u+/NF/O0VIAAAAAODmSAgAAAMDJkRQAAAAATo6kAAAAAHByJAUAAACAk2P0IQAAAMDeLBYpMvLSfDlHUgAAAADYm4+PdOyYo6MoMroPAQAAAE6OpAAAAABwciQFAAAAgL2lpko33JAzpaY6OppC8UwBAAAAYG/Z2dKOHZfmyzlaCgAAAAAnR1IAAAAAODmSAgAAAMDJkRQAAAAATo6kAAAAAHByjD4EAAAAlIYqVRwdQZGRFAAAAAD25usr/fabo6MoMroPAQAAAE6OpAAAAABwciQFAAAAgL2lpkodO+ZMqamOjqZQPFMAAAAA2Ft2trRp06X5co6WAgAAAMDJkRQAAAAATo6kAAAAAHByJAUAAACAkyMpAAAAAJwcow8BAAAApcHHx9ERFBlJAQAAAGBvvr5ScrKjoygyug8BAAAATo6kAAAAAHByJAUAAACAvaWlSb1750xpaY6OplA8UwAAAADYW1aWtGrVpflyjpYCAAAAwMmRFAAAAABOjqQAAAAAcHIkBQAAAICTIykAAAAAnBxJAQAAAODkGJIUAAAAsDdfX8kYR0dRZLQUAAAAAE6OpAAAAABwciQFAAAAgL2lpUl/+1vOlJbm6GgKRVIAAAAA2FtWlvTJJzlTVpajoykUSQEAAADg5EgKAAAAACdHUgAAAAA4OZICAAAAwMmRFAAAAABOjqQAAAAAcHJujg4AAAAAuOb4+EhJSZfmyzmSAgAAAMDeLBbJ19fRURQZ3YcAAAAAJ0dSAAAAANhbero0dGjOlJ7u6GgKRVIAAAAA2NvFi9LChTnTxYuOjqZQDk0K5s2bp6ZNmyogIEABAQFq3bq1vvzyS+tyY4ymTJmi8PBweXt7q2PHjtq3b5/NNtLT0zVq1ChVqVJFvr6+6tu3r06dOlXWhwIAAABUWA5NCmrUqKGXXnpJO3bs0I4dO9S5c2f169fPeuM/c+ZMzZ49W3PnztX27dsVFhambt26KTEx0bqNMWPGaPny5Vq6dKm2bNmipKQk9enTR1lZWY46LAAAAKBCsRhjjKOD+KugoCDNmjVLw4YNU3h4uMaMGaNJkyZJymkVCA0N1YwZM/TQQw/pwoULCgkJ0QcffKCBAwdKkk6fPq2IiAitWrVKPXr0KNI+ExISFBgYqAsXLiggIKDUju1KLBZLvuXl7PIAAACgKJKTJT+/nPmkJIeMRFSce9xy80xBVlaWli5dquTkZLVu3VpHjx7VmTNn1L17d2sdT09PdejQQVu3bpUkff/998rMzLSpEx4ersaNG1vr5Cc9PV0JCQk2EwAAAOCsHJ4U7NmzR35+fvL09NTDDz+s5cuXq2HDhjpz5owkKTQ01KZ+aGioddmZM2fk4eGhypUrF1gnP9OnT1dgYKB1ioiIsPNRAQAAABWHw5OC+vXra/fu3fr222/1j3/8Q0OGDNH+/futyy/vVmOMKbCrTVHrTJ48WRcuXLBOJ0+evLqDAAAAACowh7/R2MPDQ3Xr1pUktWrVStu3b9ecOXOszxGcOXNG1apVs9aPj4+3th6EhYUpIyND58+ft2ktiI+PV5s2bQrcp6enpzw9PUvjcAAAAADJx0eKj780X845vKXgcsYYpaenq1atWgoLC1NsbKx1WUZGhjZt2mS94W/ZsqXc3d1t6sTFxWnv3r1XTAoAAACAUmWxSCEhOVMhvVzKA4e2FDzxxBPq2bOnIiIilJiYqKVLl2rjxo1avXq1LBaLxowZo2nTpik6OlrR0dGaNm2afHx8NGjQIElSYGCghg8frnHjxik4OFhBQUEaP368mjRpoq5duzry0AAAAIAKw6FJwf/+9z8NHjxYcXFxCgwMVNOmTbV69Wp169ZNkjRx4kSlpqZqxIgROn/+vG666SatXbtW/v7+1m288sorcnNz05133qnU1FR16dJFCxYskKurq6MOCwAAAM4uPV0aOzZnfvZsqZx3XS937ylwBN5TAAAAALviPQUAAAAAKhKSAgAAAMDJkRQAAAAATo6kAAAAAHByJAUAAACAkyMpAAAAAJycQ99TAAAAAFyTvL2lo0cvzZdzJAUAAACAvbm4SFFRjo6iyOg+BAAAADg5kgIAAADA3jIypAkTcqaMDEdHUyiLMcY4OghHK84roEuLxWLJt5zLAwAAUAElJ0t+fjnzSUmSr2+Zh1Cce1xaCgAAAAAnR1IAAAAAOLkSJQVHc4dXAgAAAFDhlSgpqFu3rjp16qQPP/xQaWlp9o4JAAAAQBkqUVLwww8/qHnz5ho3bpzCwsL00EMP6b///a+9YwMAAABQBkqUFDRu3FizZ8/Wr7/+qpiYGJ05c0bt2rVTo0aNNHv2bP3222/2jhMAAABAKbHLkKTp6el68803NXnyZGVkZMjd3V0DBw7UjBkzVK1aNXvEWaoYkhQAAAB2lZ0tHTiQM9+gQc4bjstYmQ1JumPHDo0YMULVqlXT7NmzNX78eP38889av369fv31V/Xr1+9qNg8AAABUTC4uUqNGOZMDEoLicivJSrNnz1ZMTIwOHjyoXr16adGiRerVq5dc/jzgWrVq6a233tJ1111n12ABAAAA2F+JkoJ58+Zp2LBhuv/++xUWFpZvnZo1a+q99967quAAAACACikjQ5o2LWf+iSckDw/HxlMIuzxTUNHxTAEAAADsKjlZ8vPLmU9Kknx9yzyEUn+mICYmRv/+97/zlP/73//WwoULS7JJAAAAAA5SoqTgpZdeUpUqVfKUV61aVdNym0kAAAAAVAglSgqOHz+uWrVq5SmPjIzUiRMnrjooAAAAAGWnRElB1apV9eOPP+Yp/+GHHxQcHHzVQQEAAAAoOyVKCu666y49+uij2rBhg7KyspSVlaX169dr9OjRuuuuu+wdIwAAAIBSVKIhSV944QUdP35cXbp0kZtbziays7N133338UwBAAAAUMFc1ZCkhw4d0g8//CBvb281adJEkZGR9oytzDAkKQAAAOwqK0vauTNnvkULydW1zEMozj1uiVoKctWrV0/16tW7mk0AAAAA1x5XV+mGGxwdRZGVKCnIysrSggULtG7dOsXHxys7O9tm+fr16+0SHAAAAIDSV6KkYPTo0VqwYIF69+6txo0bF9j1BQAAAHBKGRnSnDk586NHSx4ejo2nECV6pqBKlSpatGiRevXqVRoxlTmeKQAAAIBdJSdLfn4580lJkq9vmYdQnHvcEg1J6uHhobp165YoOAAAAADlS4mSgnHjxmnOnDn8ig0AAABcA0r0TMGWLVu0YcMGffnll2rUqJHc3d1tli9btswuwQEAAAAofSVKCipVqqT+/fvbOxYAAAAADlCipCAmJsbecQAAAABwkBI9UyBJFy9e1FdffaW33npLiYmJkqTTp08rKSnJbsEBAAAAKH0laik4fvy4/u///k8nTpxQenq6unXrJn9/f82cOVNpaWmaP3++veMEAAAAKg4vL2nDhkvz5VyJWgpGjx6tVq1a6fz58/L29raW9+/fX+vWrbNbcAAAAECF5OoqdeyYM7m6OjqaQpV49KFvvvlGHpe9mS0yMlK//vqrXQIDAAAAUDZKlBRkZ2crKysrT/mpU6fk7+9/1UEBAAAAFVpmpvT22znzDz4oXTaEf3lTou5D3bp106uvvmr9bLFYlJSUpGeffVa9evWyV2wAAABAxZSRIY0cmTNlZDg6mkKVqKXglVdeUadOndSwYUOlpaVp0KBBOnz4sKpUqaIlS5bYO0YAAAAApahESUF4eLh2796tJUuWaOfOncrOztbw4cN1zz332Dx4DAAAAKD8sxhjjKODcLSEhAQFBgbqwoULCggIcEgMFosl33IuDwAAQAWUnCz5+eXMJyVJvr5lHkJx7nFL1FKwaNGiKy6/7777SrJZAAAAAA5QopaCypUr23zOzMxUSkqKPDw85OPjo3PnztktwLJASwEAAADsqoK1FJRo9KHz58/bTElJSTp48KDatWvHg8YAAABABVOi7kP5iY6O1ksvvaR7771XP/30k702CwAAAFQ8np7SF19cmi/n7JYUSJKrq6tOnz5tz00CAAAAFY+bm9S7t6OjKLISJQWfffaZzWdjjOLi4jR37ly1bdvWLoEBAAAAKBslSgpuu+02m88Wi0UhISHq3LmzXn75ZXvEBQAAAFRcmZnSRx/lzN9zj+Tu7th4ClGipCA7O9vecQAAAADXjowM6f77c+b/9rdynxSUaPQhAAAAANeOErUUjB07tsh1Z8+eXZJdAAAAACgjJUoKdu3apZ07d+rixYuqX7++JOnQoUNydXVVixYtrPUKeiEXAAAAgPKjREnBrbfeKn9/fy1cuND6duPz58/r/vvvV/v27TVu3Di7BgkAAACg9FiMMaa4K1WvXl1r165Vo0aNbMr37t2r7t27V7h3FRTnFdClpaBWlRJcHgAAADhacrLk55czn5Qk+fqWeQjFucct0YPGCQkJ+t///penPD4+XomJiSXZJAAAAAAHKVH3of79++v+++/Xyy+/rJtvvlmS9O2332rChAm6/fbb7RogAAAAUOF4ekr/+tel+XKuRN2HUlJSNH78eL3//vvKzMyUJLm5uWn48OGaNWuWfB3QPHI16D4EAACAa01x7nFLlBTkSk5O1s8//yxjjOrWrVvhkoFcJAUAAAC41pT6MwW54uLiFBcXp3r16snX15cbWAAAAECSLl6U/v3vnOniRUdHU6gSPVNw9uxZ3XnnndqwYYMsFosOHz6s2rVr64EHHlClSpX08ssv2ztOAAAAoOJIT5fuvDNnPilJcivRbXeZKVFLwWOPPSZ3d3edOHFCPj4+1vKBAwdq9erVdgsOAAAAQOkrUcqydu1arVmzRjVq1LApj46O1vHjx+0SGAAAAICyUaKWguTkZJsWgly///67PCvAkEsAAAAALilRUnDLLbdo0aJF1s8Wi0XZ2dmaNWuWOnXqZLfgAAAAAJS+EnUfmjVrljp27KgdO3YoIyNDEydO1L59+3Tu3Dl988039o4RAAAAQCkqUUtBw4YN9eOPP+rGG29Ut27dlJycrNtvv127du1SnTp1iryd6dOn64YbbpC/v7+qVq2q2267TQcPHrSpY4zRlClTFB4eLm9vb3Xs2FH79u2zqZOenq5Ro0apSpUq8vX1Vd++fXXq1KmSHBoAAADgdIqdFGRmZqpTp05KSEjQ1KlT9cUXX2jVqlV64YUXVK1atWJta9OmTXrkkUf07bffKjY2VhcvXlT37t2VnJxsrTNz5kzNnj1bc+fO1fbt2xUWFqZu3bopMTHRWmfMmDFavny5li5dqi1btigpKUl9+vRRVlZWcQ8PAAAAuHoeHlJMTM7k4eHoaApVojcah4SEaOvWrYqOjrZrML/99puqVq2qTZs26ZZbbpExRuHh4RozZowmTZokKadVIDQ0VDNmzNBDDz2kCxcuKCQkRB988IEGDhwoSTp9+rQiIiK0atUq9ejRI89+0tPTlZ6ebv2ckJCgiIgI3mgMAACAa0apv9H4vvvu03vvvVei4K7kwoULkqSgoCBJ0tGjR3XmzBl1797dWsfT01MdOnTQ1q1bJUnff/+9MjMzbeqEh4ercePG1jqXmz59ugIDA61TRESE3Y8FAAAAqChK9KBxRkaG3n33XcXGxqpVq1by9fW1WT579uxib9MYo7Fjx6pdu3Zq3LixJOnMmTOSpNDQUJu6oaGh1vchnDlzRh4eHqpcuXKeOrnrX27y5MkaO3as9XNuSwEAAABgFxcvSmvW5Mz36FHu32hcrOh++eUXRUVFae/evWrRooUk6dChQzZ1CuoGU5iRI0fqxx9/1JYtW/Isu3ybxphC93OlOp6enrxPAQAAAKUnPV3q0ydnPinp2koKoqOjFRcXpw0bNkiSBg4cqNdeey3PL/nFNWrUKH322Wf6+uuvbd6SHBYWJimnNeCvDzHHx8db9xkWFqaMjAydP3/eprUgPj5ebdq0uaq4AAAAAGdQrGcKLn/o9csvv7QZKai4jDEaOXKkli1bpvXr16tWrVo2y2vVqqWwsDDFxsZayzIyMrRp0ybrDX/Lli3l7u5uUycuLk579+4lKQAAAACK4KraMa52ZJxHHnlEixcv1n/+8x/5+/tbnwEIDAyUt7e3LBaLxowZo2nTpik6OlrR0dGaNm2afHx8NGjQIGvd4cOHa9y4cQoODlZQUJDGjx+vJk2aqGvXrlcVHwAAAOAMipUUWCyWPP30S/oMgSTNmzdPktSxY0eb8piYGA0dOlSSNHHiRKWmpmrEiBE6f/68brrpJq1du1b+/v7W+q+88orc3Nx05513KjU1VV26dNGCBQvk6upa4tgAAAAAZ1Gs9xS4uLioZ8+e1od0P//8c3Xu3DnP6EPLli2zb5SlrDhjuJYW3lMAAABwDUlOlvz8cuaTkqTL7pfLQnHucYvVUjBkyBCbz/fee2/xowMAAABQrhQrKYiJiSmtOAAAAIBrh4eHNHfupflyrnwPmAoAAABURO7u0iOPODqKIivWkKQAAAAArj20FAAAAAD2lpUlbd6cM9++vVTOR8UkKQAAAADsLS1N6tQpZ95Bow8VB92HAAAAACdHUgAAAAA4OZICAAAAwMmRFAAAAABOjqQAAAAAcHIkBQAAAICTY0hSAAAAwN7c3aWZMy/Nl3MkBQAAAIC9eXhIEyY4Oooio/sQAAAA4ORoKQAAAADsLStL2rkzZ75FC8nV1bHxFIKkAAAAALC3tDTpxhtz5pOSJF9fx8ZTCLoPAQAAAE6OpAAAAABwciQFAAAAgJMjKQAAAACcHEkBAAAA4ORICgAAAAAnx5CkAAAAgL25u0vPPntpvpwjKQAAAADszcNDmjLF0VEUGd2HAAAAACdHSwEAAABgb9nZ0oEDOfMNGkgu5fu3eJICAAAAwN5SU6XGjXPmk5IkX1/HxlOI8p2yAAAAACh1JAUAAACAkyMpAAAAAJwcSQEAAADg5EgKAAAAACdHUgAAAAA4OYYkBQAAAOzN3V0aP/7SfDlHUgAAAADYm4eHNGuWo6MoMroPAQAAAE6OlgIAAADA3rKzpRMncuZr1pRcyvdv8SQFAAAAgL2lpkq1auXMJyVJvr6OjacQ5TtlAQAAAFDqSAoAAAAAJ0dSAAAAADg5kgIAAADAyZEUAAAAAE6OpAAAAABwcgxJCgAAANibm5s0YsSl+XKu/EcIAAAAVDSentIbbzg6iiKj+xAAAADg5GgpAAAAAOzNGOn333Pmq1SRLBbHxlMIkgIAAADA3lJSpKpVc+aTkiRfX8fGUwi6DwEAAABOjqQAAAAAcHIkBQAAAICTIykAAAAAnBxJAQAAAODkSAoAAAAAJ8eQpAAAAIC9ublJQ4Zcmi/nyn+EAAAAQEXj6SktWODoKIqM7kMAAACAk6OlAAAAALA3Y3LeaixJPj6SxeLYeApBSwEAAABgbykpkp9fzpSbHJRjJAUAAACAkyMpAAAAAJwcSQEAAADg5EgKAAAAACdHUgAAAAA4OZICAAAAwMnxngIAAADA3lxdpQEDLs2XcyQFAAAAgL15eUn//rejoygyug8BAAAATs6hScHXX3+tW2+9VeHh4bJYLFqxYoXNcmOMpkyZovDwcHl7e6tjx47at2+fTZ309HSNGjVKVapUka+vr/r27atTp06V4VEAAAAAFZtDk4Lk5GQ1a9ZMc+fOzXf5zJkzNXv2bM2dO1fbt29XWFiYunXrpsTERGudMWPGaPny5Vq6dKm2bNmipKQk9enTR1lZWWV1GAAAAICt5GTJYsmZkpMdHU2hLMYY4+ggJMlisWj58uW67bbbJOW0EoSHh2vMmDGaNGmSpJxWgdDQUM2YMUMPPfSQLly4oJCQEH3wwQcaOHCgJOn06dOKiIjQqlWr1KNHjyLtOyEhQYGBgbpw4YICAgJK5fgKY7FY8i0vJ5cHAAAAxZGcLPn55cwnJUm+vmUeQnHuccvtMwVHjx7VmTNn1L17d2uZp6enOnTooK1bt0qSvv/+e2VmZtrUCQ8PV+PGja118pOenq6EhASbCQAAAHBW5TYpOHPmjCQpNDTUpjw0NNS67MyZM/Lw8FDlypULrJOf6dOnKzAw0DpFRETYOXoAAACg4ii3SUGuy7vVGGMK7GpT1DqTJ0/WhQsXrNPJkyftEisAAABQEZXbpCAsLEyS8vziHx8fb209CAsLU0ZGhs6fP19gnfx4enoqICDAZgIAAACcVblNCmrVqqWwsDDFxsZayzIyMrRp0ya1adNGktSyZUu5u7vb1ImLi9PevXutdQAAAABcmUPfaJyUlKQjR45YPx89elS7d+9WUFCQatasqTFjxmjatGmKjo5WdHS0pk2bJh8fHw0aNEiSFBgYqOHDh2vcuHEKDg5WUFCQxo8fryZNmqhr166OOiwAAAA4O1dXqVevS/PlnEOTgh07dqhTp07Wz2PHjpUkDRkyRAsWLNDEiROVmpqqESNG6Pz587rpppu0du1a+fv7W9d55ZVX5ObmpjvvvFOpqanq0qWLFixYINcKcPIBAABwjfLyklaudHQURVZu3lPgSLynAAAAANeaa+I9BQAAAADKBkkBAAAAYG/JyTlvMfb1zZkv5xz6TAEAAABwzUpJcXQERUZLAQAAAODkSAoAAAAAJ0dSAAAAADg5kgIAAADAyZEUAAAAAE6O0YcAAAAAe3NxkTp0uDRfzpEUAAAAAPbm7S1t3OjoKIqs/KctAAAAAEoVSQEAAADg5EgKAAAAAHtLTpZCQnKm5GRHR1MonikAAAAASsPvvzs6giIjKQAAAACuksVisfnsI6n8tw9cQvchAAAAwMmRFAAAAABOjqQAAAAAcHIkBQAAAICTIykAAAAA7Cxb0vY/J7mU/1tuRh8CAAAA7CxN0o1/zhtvb0eGUiTlP20BAAAAUKpICgAAAAAnR/chAAAAwM68Je3P/ZCSIvn4ODCawpEUAAAAAHZmkRSV+8EYxwVSRHQfAgAAAJwcSQEAAADg5EgKAAAAACdHUgAAAAA4OZICAAAAwMmRFAAAAAB2ZiTt+3OSxeLYYIqAIUkBAAAAO0uV1PjPeVPO31Eg0VIAAAAAOD1aCso5SwHNTaYCvAQDAAAAFQNJAQAAAGBn3pK2535ISZHKeRcikgIAAADAziySGuV+qAA9PHimAAAAAHByJAUAAACAkyMpAAAAAJwcSQEAAADg5EgKAAAAACdHUgAAAADYmZF07M9JBbx3qjxhSFIAAADAzlIl1fpz3pTzdxRItBQAAAAATo+kAAAAAHBydB8CAAAA7MxL0te5H1JTJW9vB0ZTOJICAAAAwM5cJN2Q+yE724GRFA3dhwAAAAAnR1IAAAAAODm6D1VQliuMd2uMKcNIAAAAUNHRUgAAAAA4OZICAAAAwMmRFAAAAACl4Lc/p4qAZwoAAAAAO0uRVPXPeePr68hQioSWAgAAAMDJkRQAAAAATo7uQwAAAICdeUn6MvdDaqrk7e3AaApHUgAAAADYmYukjrkfsrMdF0gRkRQ4kYJeeMbLzgAAAJwbzxQAAAAATo6WgmtQQS0CAAAAQH5oKQAAAACcHC0FuGLLAs8bAAAAXHKt9sggKcAV8XAyAABAyST/+d/y/z5jkgKUY7RgAACAiipFkt+f88a3/KcFPFMAAAAAODlaCuBw12rfPAAAgIqCpAAlUpIbebr8AACA0lTc+5Mr3Ztc7Y+WnpI+zf2QliZ5eV3V9kobSQHKTFm0CPBgNAAAKA9cJfXO/ZCV5cBIioakABWSPRMMEgnH4dwDKEsMYFH6+LtecZEUAChV5fmZEWf+n5czHzuAskdCVv5dM6MPvfnmm6pVq5a8vLzUsmVLbd682dEhoRyxWCwFTiVZp7iTo1W0eEviWjoWZ+DI63WtfffzUxGP0Z5/ox0Zr6P/v2LPdcqKI6+9o79H5ck1kRR8/PHHGjNmjJ588knt2rVL7du3V8+ePXXixAlHhwbYHX+8nJejr72j91/R4oLj2PM7UZJt8Z1ERWQx10CbzU033aQWLVpo3rx51rIGDRrotttu0/Tp0wtdPyEhQYGBgbpw4YICAgJKM9QC8cfi2lbQP7Pyet1LczSGq1Xcc+noYynJn1hHnuPyer7K6pyUxf8SS/Jdtdc+SrIfe26rJPtx9HeivCqL8+Lov18V/dr76NIbjZWUJDngBWbFucet8M8UZGRk6Pvvv9fjjz9uU969e3dt3bo133XS09OVnp5u/XzhwgVJOScOKA0V5Q9YrvL8b6G4sTn63Be0/9y/O+WNo699Rdt/YGCg3fZ9pe9qQd+Xkuzfnt/J4m6rJPE6+jtRXpXF37by+vezojCSrN/ehASHjECU+++nKAlehU8Kfv/9d2VlZSk0NNSmPDQ0VGfOnMl3nenTp2vq1Kl5yiMiIkolRqCiseeNjr2V59iKo7weh6Pjcvb9F6Qs4rLnPsrrtoCylCrJ+u0ND3dgJFJiYmKh/5YqfFKQ6/Js0hhTYIY5efJkjR071vo5Oztb586dU3BwsEOy0oSEBEVEROjkyZMO676Essd1d15ce+fFtXdeXHvn5chrb4xRYmKiwouQlFT4pKBKlSpydXXN0yoQHx+fp/Ugl6enpzw9PW3KKlWqVFohFllAQAB/KJwQ1915ce2dF9feeXHtnZejrn1RW9sq/OhDHh4eatmypWJjY23KY2Nj1aZNGwdFBQAAAFQcFb6lQJLGjh2rwYMHq1WrVmrdurXefvttnThxQg8//LCjQwMAAADKvWsiKRg4cKDOnj2r5557TnFxcWrcuLFWrVqlyMhIR4dWJJ6ennr22WfzdGnCtY3r7ry49s6La++8uPbOq6Jc+2viPQUAAAAASq7CP1MAAAAA4OqQFAAAAABOjqQAAAAAcHIkBQAAAICTIykoA2+++aZq1aolLy8vtWzZUps3b75i/U2bNqlly5by8vJS7dq1NX/+/DKKFPZWnGu/bNkydevWTSEhIQoICFDr1q21Zs2aMowW9lTcf/e5vvnmG7m5uen6668v3QBRaop77dPT0/Xkk08qMjJSnp6eqlOnjt5///0yihb2VNxr/9FHH6lZs2by8fFRtWrVdP/99+vs2bNlFC3s4euvv9att96q8PBwWSwWrVixotB1yu19nkGpWrp0qXF3dzfvvPOO2b9/vxk9erTx9fU1x48fz7f+L7/8Ynx8fMzo0aPN/v37zTvvvGPc3d3NJ598UsaR42oV99qPHj3azJgxw/z3v/81hw4dMpMnTzbu7u5m586dZRw5rlZxr32uP/74w9SuXdt0797dNGvWrGyChV2V5Nr37dvX3HTTTSY2NtYcPXrUfPfdd+abb74pw6hhD8W99ps3bzYuLi5mzpw55pdffjGbN282jRo1MrfddlsZR46rsWrVKvPkk0+aTz/91Egyy5cvv2L98nyfR1JQym688Ubz8MMP25Rdd9115vHHH8+3/sSJE811111nU/bQQw+Zm2++udRiROko7rXPT8OGDc3UqVPtHRpKWUmv/cCBA81TTz1lnn32WZKCCqq41/7LL780gYGB5uzZs2URHkpRca/9rFmzTO3atW3KXnvtNVOjRo1SixGlqyhJQXm+z6P7UCnKyMjQ999/r+7du9uUd+/eXVu3bs13nW3btuWp36NHD+3YsUOZmZmlFivsqyTX/nLZ2dlKTExUUFBQaYSIUlLSax8TE6Off/5Zzz77bGmHiFJSkmv/2WefqVWrVpo5c6aqV6+uevXqafz48UpNTS2LkGEnJbn2bdq00alTp7Rq1SoZY/S///1Pn3zyiXr37l0WIcNByvN93jXxRuPy6vfff1dWVpZCQ0NtykNDQ3XmzJl81zlz5ky+9S9evKjff/9d1apVK7V4YT8lufaXe/nll5WcnKw777yzNEJEKSnJtT98+LAef/xxbd68WW5u/FmuqEpy7X/55Rdt2bJFXl5eWr58uX7//XeNGDFC586d47mCCqQk175Nmzb66KOPNHDgQKWlpenixYvq27evXn/99bIIGQ5Snu/zaCkoAxaLxeazMSZPWWH18ytH+Vfca59ryZIlmjJlij7++GNVrVq1tMJDKSrqtc/KytKgQYM0depU1atXr6zCQykqzr/77OxsWSwWffTRR7rxxhvVq1cvzZ49WwsWLKC1oAIqzrXfv3+/Hn30UT3zzDP6/vvvtXr1ah09elQPP/xwWYQKByqv93n8JFWKqlSpIldX1zy/EsTHx+fJEnOFhYXlW9/NzU3BwcGlFivsqyTXPtfHH3+s4cOH69///re6du1ammGiFBT32icmJmrHjh3atWuXRo4cKSnnRtEYIzc3N61du1adO3cuk9hxdUry775atWqqXr26AgMDrWUNGjSQMUanTp1SdHR0qcYM+yjJtZ8+fbratm2rCRMmSJKaNm0qX19ftW/fXi+88AI9A65R5fk+j5aCUuTh4aGWLVsqNjbWpjw2NlZt2rTJd53WrVvnqb927Vq1atVK7u7upRYr7Ksk117KaSEYOnSoFi9eTL/SCqq41z4gIEB79uzR7t27rdPDDz+s+vXra/fu3brpppvKKnRcpZL8u2/btq1Onz6tpKQka9mhQ4fk4uKiGjVqlGq8sJ+SXPuUlBS5uNjehrm6ukq69Msxrj3l+j7PQQ84O43cIcree+89s3//fjNmzBjj6+trjh07Zowx5vHHHzeDBw+21s8dquqxxx4z+/fvN++99165GaoKxVPca7948WLj5uZm3njjDRMXF2ed/vjjD0cdAkqouNf+cow+VHEV99onJiaaGjVqmAEDBph9+/aZTZs2mejoaPPAAw846hBQQsW99jExMcbNzc28+eab5ueffzZbtmwxrVq1MjfeeKOjDgElkJiYaHbt2mV27dplJJnZs2ebXbt2WYeirUj3eSQFZeCNN94wkZGRxsPDw7Ro0cJs2rTJumzIkCGmQ4cONvU3btxomjdvbjw8PExUVJSZN29eGUcMeynOte/QoYORlGcaMmRI2QeOq1bcf/d/RVJQsRX32h84cMB07drVeHt7mxo1apixY8ealJSUMo4a9lDca//aa6+Zhg0bGm9vb1OtWjVzzz33mFOnTpVx1LgaGzZsuOL/uyvSfZ7FGNqoAAAAAGfGMwUAAACAkyMpAAAAAJwcSQEAAADg5EgKAAAAACdHUgAAAAA4OZICAAAAwMmRFAAAAABOjqQAAAAAcHIkBQCAIlmxYoXq1q0rV1dXjRkzpsz3HxUVpVdffbXM9wsAzoCkAACu0tChQ2WxWPTSSy/ZlK9YsUIWi8VBUdnfQw89pAEDBujkyZN6/vnny3z/27dv14MPPmj9bLFYtGLFijKPAwCuRSQFAGAHXl5emjFjhs6fP+/oUEpFUlKS4uPj1aNHD4WHh8vf379E28nIyChxDCEhIfLx8Snx+uXB1Rw/AJQmkgIAsIOuXbsqLCxM06dPv2K9Tz/9VI0aNZKnp6eioqL08ssv2yyPiorStGnTNGzYMPn7+6tmzZp6++23C93/vn371Lt3bwUEBMjf31/t27fXzz//LEnKzs7Wc889pxo1asjT01PXX3+9Vq9ebV332LFjslgsWrZsmTp16iQfHx81a9ZM27ZtkyRt3LjRmgR07txZFotFGzduLPLxvPDCCxo6dKgCAwP197//XQsWLFClSpX0xRdfqH79+vLx8dGAAQOUnJyshQsXKioqSpUrV9aoUaOUlZVls63c7kNRUVGSpP79+8tisSgqKkrHjh2Ti4uLduzYYRPD66+/rsjISBlj8j13b775pqKjo+Xl5aXQ0FANGDDAuiw7O1szZsxQ3bp15enpqZo1a+rFF1+0Lt+zZ486d+4sb29vBQcH68EHH1RSUpJ1+dChQ3Xbbbdp+vTpCg8PV7169SRJv/76qwYOHKjKlSsrODhY/fr107Fjx6zrbdy4UTfeeKN8fX1VqVIltW3bVsePH8//4gOAPRgAwFUZMmSI6devn1m2bJnx8vIyJ0+eNMYYs3z5cvPXP7M7duwwLi4u5rnnnjMHDx40MTExxtvb28TExFjrREZGmqCgIPPGG2+Yw4cPm+nTpxsXFxdz4MCBAvd/6tQpExQUZG6//Xazfft2c/DgQfP++++bn376yRhjzOzZs01AQIBZsmSJ+emnn8zEiRONu7u7OXTokDHGmKNHjxpJ5rrrrjNffPGFOXjwoBkwYICJjIw0mZmZJj093Rw8eNBIMp9++qmJi4sz6enpRT6egIAAM2vWLHP48GFz+PBhExMTY9zd3U23bt3Mzp07zaZNm0xwcLDp3r27ufPOO82+ffvM559/bjw8PMzSpUtttvXKK68YY4yJj483kkxMTIyJi4sz8fHxxhhjunXrZkaMGGFzfpo3b26eeeaZfM/d9u3bjaurq1m8eLE5duyY2blzp5kzZ451+cSJE03lypXNggULzJEjR8zmzZvNO++8Y4wxJjk52YSHh5vbb7/d7Nmzx6xbt87UqlXLDBkyxOa74efnZwYPHmz27t1r9uzZY5KTk010dLQZNmyY+fHHH83+/fvNoEGDTP369U16errJzMw0gYGBZvz48ebIkSNm//79ZsGCBeb48eMFfgcA4GqRFADAVcpNCowx5uabbzbDhg0zxuRNCgYNGmS6detms+6ECRNMw4YNrZ8jIyPNvffea/2cnZ1tqlataubNm1fg/idPnmxq1aplMjIy8l0eHh5uXnzxRZuyG264wXrznJsUvPvuu9bl+/btM5Ksycj58+eNJLNhw4ZiH89tt91mUycmJsZIMkeOHLGWPfTQQ8bHx8ckJiZay3r06GEeeughm23lJgXGGCPJLF++3GbbH3/8salcubJJS0szxhize/duY7FYzNGjR/M9N59++qkJCAgwCQkJeZYlJCQYT09PaxJwubfffttUrlzZJCUlWctWrlxpXFxczJkzZ4wxOd+N0NBQk56ebq3z3nvvmfr165vs7GxrWXp6uvH29jZr1qwxZ8+eNZLMxo0b890vAJQGug8BgB3NmDFDCxcu1P79+/MsO3DggNq2bWtT1rZtWx0+fNimm0zTpk2t8xaLRWFhYYqPj5ck9ezZU35+fvLz81OjRo0kSbt371b79u3l7u6eZ58JCQk6ffp0vvs9cOCATdlf91utWjVJsu43P0U9nlatWuVZ18fHR3Xq1LF+Dg0NVVRUlPz8/GzKrrT//Nx2221yc3PT8uXLJUnvv/++OnXqZO1udLlu3bopMjJStWvX1uDBg/XRRx8pJSXFenzp6enq0qVLvuseOHBAzZo1k6+vr7Wsbdu2ys7O1sGDB61lTZo0kYeHh/Xz999/ryNHjsjf3996LYOCgpSWlqaff/5ZQUFBGjp0qHr06KFbb71Vc+bMUVxcXLHOAwAUF0kBANjRLbfcoh49euiJJ57Is8wYk2c0IpNPP/fLb+4tFouys7MlSe+++652796t3bt3a9WqVZIkb2/vQuPKb7+Xl/11v7nLcvebn6Iez19vmvPbV+7+rnTcReXh4aHBgwcrJiZGGRkZWrx4sYYNG1ZgfX9/f+3cuVNLlixRtWrV9Mwzz6hZs2b6448/Cj2v+R3/X2PPdfnxZ2dnq2XLltbrmDsdOnRIgwYNkiTFxMRo27ZtatOmjT7++GPVq1dP3377bVFPAwAUG0kBANjZSy+9pM8//1xbt261KW/YsKG2bNliU7Z161bVq1dPrq6uRdp29erVVbduXdWtW1eRkZGScn7h37x5szIzM/PUDwgIUHh4eL77bdCgQXEOKw97HM/VcHd3t2mRyPXAAw/oq6++0ptvvqnMzEzdfvvtV9yOm5ubunbtqpkzZ+rHH3/UsWPHtH79ekVHR8vb21vr1q3Ld72GDRtq9+7dSk5OtpZ98803cnFxsT5QnJ8WLVro8OHDqlq1qvVa5k6BgYHWes2bN9fkyZO1detWNW7cWIsXLy7slABAiZEUAICdNWnSRPfcc49ef/11m/Jx48Zp3bp1ev7553Xo0CEtXLhQc+fO1fjx469qfyNHjlRCQoLuuusu7dixQ4cPH9YHH3xg7cIyYcIEzZgxQx9//LEOHjyoxx9/XLt379bo0aOvar+ldTxFFRUVpXXr1unMmTM2Q8E2aNBAN998syZNmqS77777ir/4f/HFF3rttde0e/duHT9+XIsWLVJ2drbq168vLy8vTZo0SRMnTtSiRYv0888/69tvv9V7770nSbrnnnvk5eWlIUOGaO/evdqwYYNGjRqlwYMHKzQ0tMB93nPPPapSpYr69eunzZs36+jRo9q0aZNGjx6tU6dO6ejRo5o8ebK2bdum48ePa+3atTp06NBVJ3EAcCUkBQBQCp5//vk8XWlatGihf/3rX1q6dKkaN26sZ555Rs8995yGDh16VfsKDg7W+vXrlZSUpA4dOqhly5Z65513rN1xHn30UY0bN07jxo1TkyZNtHr1an322WeKjo6+qv2W1vEU1csvv6zY2FhFRESoefPmNsuGDx+ujIyMK3YdkqRKlSpp2bJl6ty5sxo0aKD58+dryZIl1uc1nn76aY0bN07PPPOMGjRooIEDB1qfc/Dx8dGaNWt07tw53XDDDRowYIC6dOmiuXPnXnGfPj4++vrrr1WzZk3dfvvtatCggYYNG6bU1FQFBATIx8dHP/30k+644w7Vq1dPDz74oEaOHKmHHnroKs4WAFyZxeTXARQAgArsxRdf1NKlS7Vnzx5HhwIAFQItBQCAa0ZSUpK2b9+u119/XY8++qijwwGACoOkAABwzRg5cqTatWunDh06FNp1CABwCd2HAAAAACdHSwEAAADg5EgKAAAAACdHUgAAAAA4OZICAAAAwMmRFAAAAABOjqQAAAAAcHIkBQAAAICTIykAAAAAnNz/A6N/AXKEKamcAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "fig, ax = plt.subplots(figsize=(9,5))\n", "\n", "# Plotting the histogram of scores\n", "plt.hist(scores, bins=100, color='black', alpha=1, label='scores, ${s_i}$')\n", "plt.axvline(x=qhat, color='red', linestyle='--', label=f'quantile $\\hat{{q}}$: {qhat:.4f}')\n", "plt.xlabel('Non-conformity scores')\n", "plt.ylabel('Frequency')\n", "plt.title('Distribution of Non-conformity Scores')\n", "plt.legend(loc='upper right')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "aeaf4ebd", "metadata": {}, "source": [ "### Coverage Probability Test" ] }, { "cell_type": "code", "execution_count": 99, "id": "76190454", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coverage: 0.95\n", "Avg. set size: 1.8\n" ] } ], "source": [ "#Prediction sets\n", "prediction_sets = []\n", "\n", "for i in range(len(X_new)):\n", " prob_sample = model.predict_proba(X_new[i:i+1])[0]\n", " uncertainty_scores = 1 - prob_sample\n", " prediction_set = [cls for cls, score in enumerate(uncertainty_scores) if score <= qhat]\n", " prediction_sets.append(prediction_set)\n", "\n", "# Coverage probability\n", "matches = [true_label in pred_set for true_label, pred_set in zip(y_new, prediction_sets)]\n", "coverage = np.mean(matches)\n", "\n", "# Average set size\n", "avg_set_size = np.mean([len(pred_set) for pred_set in prediction_sets])\n", "\n", "# Print the results\n", "print(f'Coverage: {coverage:.2f}')\n", "print(f'Avg. set size: {avg_set_size:.1f}')" ] }, { "cell_type": "code", "execution_count": 100, "id": "882c04a4", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx4AAAHUCAYAAAC01v7FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABpyklEQVR4nO3deXhU9d3//9csWchKQkjYQgBBJECiBKKAyuqCVFutra0b1qUucaW1aturLq3Fu9bK7dVg9VZrbau19HYvPxCQRQsSdoRIAAXCngWSECDLzJzfH34zNyGZ5DMhyZkMz8d1zQU5c2bm88m8SObNOZ/3cViWZQkAAAAAOpDT7gEAAAAACH8UHgAAAAA6HIUHAAAAgA5H4QEAAACgw1F4AAAAAOhwFB4AAAAAOhyFBwAAAIAOR+EBAAAAoMNReAAAAADocBQeAGDgiSeekMPhUFlZWbP3jxgxQhMnTuzcQbWjhvk13JxOp3r37q0rrrhC//nPf+weXqt27dolh8Oh119/3fgxH3zwgRwOh3r06KHa2lrjxy1dulQOh0NLly5tdd+JEyc2ykVz41yxYoWeeOIJVVRUtPp4AOjKKDwAAH7z58/XypUr9dlnn+n555/XwYMHNXHiRK1bt87uobW7V199VZJ0+PBhvffee53ymr1799bKlSs1ffp0/7YVK1boySefbLbwmDNnjubMmdMpYwOAjkbhAQBniOPHj7e6T05Oji644AKNGzdOP/jBD/Svf/1LHo9H//rXvzphhJ3n4MGDmjdvniZPnqzo6Gh/EdLRoqKidMEFF6hnz55G+2dmZiozM7ODRwUAnYPCAwA6QMPpOH/72980c+ZM9erVS926ddOECRO0fv36RvvecsstiouL05YtWzRlyhTFxsaqZ8+euvfee5sUC5Zlac6cOTr33HPVrVs3JSUl6dprr9XXX3/daL+JEydqxIgRWr58ucaNG6eYmBjdeuutQc8jMTFRkhQREdFoe3FxsW688UalpqYqKipKw4YN03PPPSefz9fke3DqKUnNnW7U8D3YsWOHrrjiCsXFxSk9PV0/+clPmpwGtX//fn3/+99XfHy8EhMTdd111+ngwYNBzesvf/mLPB6PHnroIV1zzTVavHixdu/e3WS/rVu36vLLL1dMTIxSUlJ011136ejRo032syxLv/vd75SRkaHo6GiNGjVK/9//9/812e/UuT/xxBN6+OGHJUkDBw70n+rW8D1r7lSrw4cP65577lHfvn0VGRmpQYMG6Re/+EWT75PD4dC9996rv/71rxo2bJhiYmKUnZ2tjz76KKjvFQC0FwoPAOhAP//5z/X111/rlVde0SuvvKL9+/dr4sSJTQqF+vp6XXHFFZoyZYree+893XvvvXrppZd03XXXNdrvzjvv1IMPPqipU6fqvffe05w5c7RlyxaNGzdOhw4darTvgQMHdOONN+r666/XvHnzdM8997Q6Xq/XK4/Ho7q6Ou3YsUN5eXmKiorStdde69+ntLRU48aN08cff6xf//rX+uCDDzR16lT99Kc/1b333tvm71V9fb2uuuoqTZkyRe+//75uvfVWPf/88/qv//ov/z4nTpzQ1KlT9fHHH2vWrFmaO3euevXq1eT71JrXXntNvXv31rRp03TrrbfK5/M1WR9y6NAhTZgwQZs3b9acOXP017/+VdXV1c3O8cknn9QjjzyiSy65RO+9957uvvtu3XHHHSoqKmpxHLfffrvuu+8+SdI777yjlStXauXKlRo1alSz+9fU1GjSpEl64403NHPmTP373//WjTfeqN/97ne65pprmuz/73//W3/84x/11FNP6X//93+VnJysq6++ukn+AKBTWACAVj3++OOWJKu0tLTZ+4cPH25NmDDB//WSJUssSdaoUaMsn8/n375r1y4rIiLCuv322/3bZsyYYUmy/vu//7vRcz799NOWJOuzzz6zLMuyVq5caUmynnvuuUb77dmzx+rWrZv1s5/9zL9twoQJliRr8eLFQc3v1FtCQoL1zjvvNNr30UcftSRZq1atarT97rvvthwOh1VUVNToe7BkyZJG++3cudOSZP35z39u8j345z//2WjfK664who6dKj/6xdffNGSZL3//vuN9rvjjjuaPGcgy5cvtyRZjz76qGVZluXz+ayBAwdaGRkZjd6rRx55xHI4HNaGDRsaPf6SSy5pNK8jR45Y0dHR1tVXX91ov//85z+WpEa5aG7uzz77rCXJ2rlzZ5OxTpgwodHj//SnPzX7ffqv//ovS5L18ccf+7dJstLS0qyqqir/toMHD1pOp9OaNWtWi98jAOgIHPEAgA50/fXXy+Fw+L/OyMjQuHHjtGTJkib73nDDDU0eK8m/70cffSSHw6Ebb7xRHo/Hf+vVq5eys7ObnNKUlJSkyZMnBzXeRYsWafXq1SooKNBHH32kqVOn6gc/+IHeffdd/z6ffPKJMjMzlZub2+ixt9xyiyzL0ieffBLUazZwOBy68sorG23LyspqdArUkiVLFB8fr6uuuqrRfg3fKxMN6zkaTj1zOBy65ZZbtHv3bi1evLjRaw0fPlzZ2dktvtbKlStVU1PT5P0bN26cMjIyjMdl4pNPPlFsbGyjI1DSN997SY3GL0mTJk1SfHy8/+u0tDSlpqY2e1oZAHQ0Cg8AMOB2uyV9cypSczweT5N1EJLUq1evZreVl5c3ef4ePXo0+9iGfQ8dOiTLspSWlqaIiIhGt88//7xJq9/evXsbzu7/ZGdna/To0RozZoymT5+uuXPnavDgwcrLy/PvU15e3uxz9+nTp9F4gxUTE6Po6OhG26KiolRTU9PotdPS0po8trnvc3OOHj2quXPnKjc3Vz179lRFRYUqKip09dVXy+FwNFpkXl5eHvD9O1nDfE32PV0NYzq5mJWk1NRUud3uJt/7UzMlffM9PXHiRLuOCwBMuO0eAAB0BQ0fdvft29fkg69lWTpw4IBGjx7d5HHNLXo+ePBgkw+EHo9H5eXljbY3PLZhW0pKihwOhz799FNFRUU1ed5Tt5364bQtnE6nhg8frrlz56qkpESpqanq0aOHDhw40GTf/fv3+8cpyV9EnLroOdC1UEz06NFDBQUFTbabLi5/6623dPz4cRUUFCgpKanJ/e+++66OHDmipKQk9ejRI+D7d+qYAo3h4MGDGjBggNHYTPTo0UOrVq2SZVmN3t+SkhJ5PB7/9x4AQhFHPADAwOTJk+VwOPT22283uW/+/PmqqqrS1KlTm9z31ltvybIs/9e7d+/WihUrmr0o3N///vdGX7/55puS5N/3W9/6lizL0r59+zR69Ogmt5EjR57GDJvn9Xr1xRdfKCoqSgkJCZKkKVOmqLCwsMm1Pd544w05HA5NmjRJkvwfuDdt2tRovw8++KDN45k0aZKOHj3a5DkavletefXVVxUfH6/FixdryZIljW7PPvusamtr/e/DpEmTtGXLFm3cuLHF17rgggsUHR3d5P1bsWKF0SlNDQWjyVGIKVOmqLq6usl1R9544w3//QAQqjjiAQAGzjrrLN1777169tlnVVFRoSuuuELdunXT6tWr9cwzz2j06NHNrjMoKSnR1VdfrTvuuEOVlZV6/PHHFR0drccee6zRfpGRkXruuedUXV2tMWPGaMWKFfrNb36jadOm6cILL5QkjR8/Xj/+8Y/1ox/9SGvWrNHFF1+s2NhYHThwQJ999plGjhypu++++7TmuXbtWn8L3UOHDum1117T1q1b9dBDD/mPYDz00EN64403NH36dD311FPKyMjQv//9b82ZM0d33323zj77bEnfnGY0depUzZo1S0lJScrIyNDixYv1zjvvtHl8N998s55//nndfPPNevrppzVkyBDNmzdPCxYsaPWxmzdvVkFBge6+++5m176MHz9ezz33nF599VXde++9evDBB/Xaa69p+vTp+s1vfqO0tDT9/e9/19atWxs9LikpST/96U/1m9/8Rrfffru+973vac+ePXriiSeMTrVqKBj/+7//WzNmzFBERISGDh3aaG3GyfPPz8/XjBkztGvXLo0cOVKfffaZfvvb3+qKK65otvgFgJBh58p2AOhKfD6f9eKLL1qjR4+2YmJirMjISGvIkCHWI488Yh09erTRvg0dnf76179a999/v9WzZ08rKirKuuiii6w1a9Y02nfGjBlWbGystWnTJmvixIlWt27drOTkZOvuu++2qqurm4zjtddes84//3wrNjbW6tatm3XWWWdZN998c6PnnTBhgjV8+HDjuTXX1So5Odk6//zzrddee83yer2N9t+9e7d1/fXXWz169LAiIiKsoUOHWs8++2yT/Q4cOGBde+21VnJyspWYmGjdeOON1po1a5rtahUbGxtwXCfbu3ev9d3vfteKi4uz4uPjre9+97vWihUrWu1q9eCDD1qSmnSpOllDx661a9dalmVZhYWF1iWXXGJFR0dbycnJ1m233Wa9//77Tbp1+Xw+a9asWVZ6eroVGRlpZWVlWR9++GGTrlTNdbWyLMt67LHHrD59+lhOp7PRc5/6eMuyrPLycuuuu+6yevfubbndbisjI8N67LHHrJqamkb7SbLy8vKazDEjI8OaMWNGwO8BAHQUh2WddA4AAKBdLF26VJMmTdLcuXObdCA61S233KJ//etfqq6u7qTRAQDQ+VjjAQAAAKDDnRGFx0cffaShQ4dqyJAheuWVV+weDgAAAHDGCftTrTwejzIzM7VkyRIlJCRo1KhRWrVqlZKTk+0eGgAAAHDGCPsjHgUFBRo+fLj69u2r+Ph4XXHFFUbdTwAAAAC0n5AvPJYvX64rr7xSffr0kcPhaNK7XJLmzJmjgQMHKjo6Wjk5Ofr000/99+3fv199+/b1f92vXz/t27evM4YOAAAA4P8J+cLj2LFjys7O1h//+Mdm73/77bf14IMP6he/+IXWr1+viy66SNOmTVNxcbEkqbkzydrjar4AAAAAzIX8BQSnTZumadOmBbz/D3/4g2677TbdfvvtkqTZs2drwYIFevHFFzVr1iz17du30RGOvXv36vzzzw/4fLW1taqtrfV/7fP5dPjwYfXo0YOCBQAAAGHBsiwdPXpUffr0kdPZOcciQr7waEldXZ3Wrl2rRx99tNH2Sy+9VCtWrJAk5ebmavPmzdq3b58SEhI0b948/epXvwr4nLNmzdKTTz7ZoeMGAAAAQsGePXvUr1+/TnmtLl14lJWVyev1Ki0trdH2tLQ0HTx4UJLkdrv13HPPadKkSfL5fPrZz36mHj16BHzOxx57TDNnzvR/XVlZqf79+2v79u1KSkqSJDmdTrlcLnm9Xvl8Pv++Dds9Hk+jU7xcLpecTmfA7fX19Y3G4HZ/87Z4PB6j7REREfL5fPJ6vf5tDodDbrc74PZAY2dObZ+Tx+PRsmXLNHnyZEVERITFnFrbzpzaPqf6+notW7ZMEyZMUFRUVFjMKRzfp1CYk2VZWrx4sSZMmOB/bFefUzi+T6Eyp5N/F516pkZXnVNLY2dObZ9TeXm5hgwZovj4eHWWLl14NDj1H5ZlWY22XXXVVbrqqquMnisqKkpRUVFNticnJ9OCFy3yeDzKyMhQ9+7d/T80gEAa8tKjRw/yghaRFQSD30Uw1VAcdeZSgi6dyJSUFLlcLv/RjQYlJSVNjoKcLv7xojVut7vF9UPAycgLTJEVBIO8wJQdn21DvqtVSyIjI5WTk6OFCxc22r5w4UKNGzfutJ47Pz9fmZmZGjNmjCQ1OnwFNMfr9aqoqIiswAh5gSmygmCQF5iyIyMhX3hUV1drw4YN2rBhgyRp586d2rBhg79d7syZM/XKK6/otdde05dffqmHHnpIxcXFuuuuu07rdfPy8lRYWKjVq1dLUqPz44Dm+Hw+bd++nazACHmBKbKCYJAXmLIjIyF//tCaNWs0adIk/9cNC79nzJih119/Xdddd53Ky8v11FNP6cCBAxoxYoTmzZunjIyMdh0H/4ABAABCg2VZ8ng8HNlpRUREhFwul93D8Av5wmPixInNXgTwZPfcc4/uueeeDh3HqZ0IAAAA0Pnq6up04MABHT9+3O6hhDyHw6F+/fopLi7O7qFI6gKFR6g4taUZcCqn06n09PROuwgPujbyAlNkBcEI97z4fD7t3LlTLpdLffr0UWRkJBd4DsCyLJWWlmrv3r0aMmRIkyMfdmSEwiOA/Px85efn+w/hcaoVWuNyuZSdnW33MNBFkBeYIisIRrjnpa6uTj6fT+np6YqJibF7OCGvZ8+e2rVrl+rr65sUHnacghWe5XA7OHVx+YkTJ2weEUKd1+vVxo0bOd8URsgLTJEVBONMyUu4HtFpby0dDaKrVQirqamxewgIcT6fT3v27OHoGIyQF5giKwgGeYEpOzJC4WGorq7O7iEAAAAAXRaFhyEKDwAAAKDtKDwM0dUKrXE6nRoyZAjnncIIeYEpsoJgkJeu7+qrr1ZSUpKuvfbaDn0dOzJCKgPIz89XZmamxowZI4muVmidy+XS0KFDQ+pCPQhd5AWmyAqCQV66vvvvv19vvPFGh78OXa1CCF2tECyPx6NVq1ZxdAxGyAtMkRUEg7x0fZMmTVJ8fHyHv44dGaHwMFRbW2v3EBDiGi7UY1mW3UNBF0BeYIqsIBjkBabsyAiFhyEWlwMAAABtR+FhiMIDAAAAaDsKD0OcK4nWuFwuZWVlsaAPRsgLTJEVBIO8wJQdGXF3+it2Efn5+crPz/dfTt6Oy8qja3E6nerfv7/dw0AXQV5giqwgGOSl67vsssu0bt06HTt2TP369dO7777r77Lanuxop0vhEUBeXp7y8vJUVVWlxMREulqhVR6PR5999pkuvPBCud3800LLyAtMkRUE40zMi2VZOn78eKe/bkxMjBwOR7s/74IFC9r9OZtjx9k8Z0Yi2wFdrdAay7JUXV1NJxEYIS8wRVYQjDMxL8ePH1dcXFynv251dbViY2M7/XXbix0ZofAwVF9fb/cQAAAA0EV1xNGR5oRy0UnhYYiuVgAAAKEnJiZG1dXVtrxuMNqzILj66qu1dOlSTZkyRf/617/a7Xk7GoWHIbpaoTUul0u5ubl0EoER8gJTZAXBOBPz4nA4uvQpT815/fXXJUm33HJLs/fff//9uvXWW/WXv/ylza9hR0Zop2uIwgOtcTqdSk1NtaVLBLoe8gJTZAXBIC+hbdq0aXr88cd1wQUXKCMjQ4WFhW16nkmTJik+Pv60xmJHRkilITu6JaBrqa+v1/z581kPBCPkBabICoJBXkLb5s2bNXDgQH3++ee644479OGHH9o2FjsywqlWAZx6HQ+6WsEER8YQDPICU2QFwSAvoamyslIRERH+06ciIyOVmJjov9/r9SonJ0eSdPjwYUnS7NmzJUlr164Ni9PnKDwCOPU6HseOHbN7SAAAAOiiNm/erNzc3EZf//jHP/Z/7XK5tGHDBkmtr/HoqjjVyhAXEAQAAEBbbd68WSNHjvR//cUXX2jEiBE2jqjzUXgYovBAa9xutyZMmHDGXCkWp4e8wBRZQTDIS+jasmWLv/DweDyqrq5W9+7d2/Rcl112mb73ve9p3rx56tevn1avXh30c9iREVJpiMIDJqKjo+0eAroQ8gJTZAXBIC+h6YUXXvD/3e12a/v27QH3be0UqwULFrTXsDoVRzwM2XFhGnQtHo9HCxYsYFEfjJAXmCIrCAZ5gSk7MkLhYYgjHgAAAEDbUXgYovAAAAAA2o7CwxAXEAQAAADajsIjgPz8fGVmZmrMmDGSKDzQOrfbrcsuu4xOIjBCXmCKrCAY5AWm7MgIhUcAeXl5Kiws9Lcno/CAiZqaGruHgC6EvMAUWUEwzoS8WJZl9xC6hFD7PlF4GPJ6vaqrq7N7GAhhHo9Hy5Yto5MIjJAXmCIrCEa45yUiIkIS/yFsquGzq8vlanKfHRnhOFwQjh8/rsjISLuHAQAAcEZyuVzq3r27SkpKJEkxMTFyOBw2jyo0+Xw+lZaWKiYmJmROvQuNUXQRx44da/MVJgEAAHD6evXqJUn+4gOBOZ1O9e/fP2SKMwqPIHBYD60Jlf9RQNdAXmCKrCAY4Z4Xh8Oh3r17KzU1VfX19XYPJ6RFRkbK6QydlRUOK9RWnYSYqqoqJSYmSpLWr1+vc889194BAQAAAKep4TNuZWWlEhISOuU1Q6cE6gKOHTtm9xAQwnw+n0pKSuTz+eweCroA8gJTZAXBIC8wZUdGKDyCUFVVZfcQEMK8Xq8KCgrk9XrtHgq6APICU2QFwSAvMGVHRig8glBZWWn3EAAAAIAuicIjCBQeAAAAQNtQeASBwgMtcTgciouLC5mWdQht5AWmyAqCQV5gyo6MhHe/tdOQn5+v/Pz8Rue/UXigJW63WxMnTrR7GOgiyAtMkRUEg7zAlB1tlzniEUBeXp4KCwu1evVq/zYKD7TE5/OpuLiYTiIwQl5giqwgGOQFpuhqFeLoaoWWeL1ebdq0iU4iMEJeYIqsIBjkBaboahXiOOIBAAAAtA2FRxAoPAAAAIC2ofAIAoUHWuJwONSzZ086icAIeYEpsoJgkBeYsiMjDsuyrE5/1S6kqqpKiYmJkqSBAwfq66+/tnlEAAAAwOlp+IxbWVmphISETnlNjngEoaKiwu4hIIR5vV4VFRWxoA9GyAtMkRUEg7zAFIvLQ1xFRQX/kBGQz+fT9u3baWEII+QFpsgKgkFeYIp2uiHOsiyOegAAAABtQOFhKC4uTpJUXl5u80gAAACArofCw1BycrIkCg8E5nQ6lZ6eLqeTf1ZoHXmBKbKCYJAXmLIjI6TSUI8ePSRReCAwl8ul7OxsuVwuu4eCLoC8wBRZQTDIC0zZkREKD0NJSUmSKDwQmNfr1caNG2lAACPkBabICoJBXmCKrlYhjMIDrfH5fNqzZw+dRGCEvMAUWUEwyAtM0dUqhLHGAwAAAGg7Cg9DDUc8ysrKbB4JAAAA0PVQeASQn5+vzMxMjRkzRpLUs2dPSVJJSYmdw0IIczqdGjJkCJ1EYIS8wBRZQTDIC0zZkRGHZVlWp79qF1JVVaXExET9/e9/1w033KDzzz9fn3/+ud3DAgAAANqs4TNuZWWlEhISOuU1KYcNNRzx2L9/v80jQajyeDxatWqVPB6P3UNBF0BeYIqsIBjkBabsyAiFh6HU1FRJ0sGDB+kUgWZZlqXS0lJxEBEmyAtMkRUEg7zAlB0ZofAw1FB41NfX09kKAAAACBKFh6HIyEj/6VYHDhyweTQAAABA10LhYcjlcql3796SWOeB5rlcLmVlZcnlctk9FHQB5AWmyAqCQV5gyo6MUHgYcjqd6tOnjySOeKB5TqdT/fv3p4UhjJAXmCIrCAZ5gSk7MkIqDXk8Hv8RDwoPNMfj8Wjp0qV0EoER8gJTZAXBIC8wRVerEGZZFqdaoUWWZam6uppOIjBCXmCKrCAY5AWm6GoV4jjVCgAAAGgbCo8gcMQDAAAAaBsKD0Mul4sjHmiRy+VSbm4unURghLzAFFlBMMgLTNmREXenv2IX5XQ6Gy0utyxLDofD5lEhlDidTv+FJoHWkBeYIisIBnmBKbpahbD6+nr17t1bDodDdXV1KikpsXtICDH19fWaP3++6uvr7R4KugDyAlNkBcEgLzBlR0YoPIIQGRmp9PR0SdLXX39t82gQimhfiGCQF5giKwgGeUGoovAI0qBBgyRReAAAAADBoPAIEoUHAAAAEDwKD0Nu9zfr8Ck8EIjb7daECRP8WQFaQl5giqwgGOQFpuzICIVHkCg80JLo6Gi7h4AuhLzAFFlBMMgLQhWFh6GGhVoUHgjE4/FowYIFLOqDEfICU2QFwSAvMGVHRig8gtRQeOzbt081NTU2jwYAAADoGig8gpSSkqL4+HhZlqXdu3fbPRwAAACgSzgjCo+rr75aSUlJuvbaa0/7uRwOB6dbAQAAAEE6IwqP+++/X2+88cZpPcfJK/8bCo8dO3ac1nMivLjdbl122WV0EoER8gJTZAXBIC8wRVerDjJp0iTFx8e32/Odc845kqTCwsJ2e06EB9b9IBjkBabICoJBXhCqbC88li9friuvvFJ9+vSRw+HQe++912SfOXPmaODAgYqOjlZOTo4+/fTTTh/nySv/MzMzJVF4oDGPx6Nly5bRSQRGyAtMkRUEg7zA1BnZ1erYsWPKzs7WH//4x2bvf/vtt/Xggw/qF7/4hdavX6+LLrpI06ZNU3FxsX+fnJwcjRgxoslt//79HTLm4cOHS5K2bNkiy7I65DUAAACAcGL7CYDTpk3TtGnTAt7/hz/8Qbfddptuv/12SdLs2bO1YMECvfjii5o1a5Ykae3ate02ntraWtXW1vq/rqqqkvRNVVhfXy9JGjJkiBwOh8rLy7V//36lpqZKkpxOp1wulzweT6OCxOVyyel0Btze8LwNGs65O7USDbQ9IiJCPp9PXq/Xv83hcMjtdgfc7vV65fP5/Nsbxh5oO3NqfU4Nf1qWJcuywmJOrW1nTm2f08m5CZc5heP7FApzanDy/l19TuH4PoXKnE7+XWQ611CfU0tjZ05tn5MdRzxsLzxaUldXp7Vr1+rRRx9ttP3SSy/VihUrOuQ1Z82apSeffLLJ9mXLlikmJkaSlJ6erkGDBumrr77SX/7yF2VlZUn6piAZOnSo1q5dq9LSUv9js7Ky1L9/f3322Weqrq72b8/NzVVqaqoWL17c6M2fMGGCoqOjtWDBgkZjuOyyy1RTU6Nly5b5t7ndbl1++eUqKytTQUGBf3tcXJwmTpyovXv3atOmTf7tPXv21Pnnn68dO3Zo+/bt/u3p6enKzs7W5s2btWfPHv925hT8nLxer2pra8NqTuH4PoXKnBYvXhx2c5LC732yc07jx4+X0+nU4sWLw2ZO4fg+hdKcGj5YnpyZrj6ncHyf7J5TUVGROpvDCqFzhRwOh95991195zvfkSTt379fffv21X/+8x+NGzfOv99vf/tb/eUvfzH+hl122WVat26djh07puTkZL377rsaM2ZMs/s2d8QjPT1dZWVlSkhIkPRNtXjNNdfogw8+0OzZs3XPPff4t4dDBRyOVT1zYk7MiTkxJ+bEnJgTc/q/OVVUVCglJUWVlZX+z7gdLaSPeDQ4+VCz9M3hw1O3teTUSrIlUVFRioqKarLd5XIpIiLC/3VmZqY++OADFRUVNdouBW5PFmj7qY9vy3an0ymns+mSnUDbXS6XXC6X8Xbm1PrYfT6fysrKlJKSIqfTGRZzMtnOnNo2p1Pz0rD9dMceaDvvU9edU3NZaW3soT6nlrYzp9Obk8/nU2lpqVJSUsJmTm3dzpyCn1NHs31xeUtSUlLkcrl08ODBRttLSkqUlpbWqWM5uYqUGi8wB6RvMlJQUNAkK0BzyAtMkRUEg7zAlB0ZCenCIzIyUjk5OVq4cGGj7QsXLmx06lVHyM/PV2ZmZsBTshrWdWzYsKHRISwAAAAATdl+qlV1dXWjK4Dv3LlTGzZsUHJysvr376+ZM2fqpptu0ujRozV27Fi9/PLLKi4u1l133dWh48rLy1NeXp6qqqqUmJjY5P5hw4YpKipKVVVV+uqrrzRkyJAOHQ8AAADQldleeKxZs0aTJk3yfz1z5kxJ0owZM/T666/ruuuuU3l5uZ566ikdOHBAI0aM0Lx585SRkdGp4zx1TUlERITOPfdcrVq1SmvXrqXwgBwOh+Li4oJaf4QzF3mBKbKCYJAXmLIjIyHV1SoUNRzxaG7Ff15enubMmaOf/vSnevbZZ20aIQAAABCclj7jdpSQXuMRSppbx5GTkyOpfS9giK7L5/OpuLiYNT8wQl5giqwgGOQFpuzICIVHAKcuLm9u5f/JhQf/wOH1erVp0yY6icAIeYEpsoJgkBeYoqtVCMnLy1NhYaFWr14dcJ/MzMxGC8wBAAAANI/C4zRERERo1KhRkqSVK1faPBoAAAAgdFF4GAq08v/CCy+UJH322WedORyEIIfDoZ49e9JJBEbIC0yRFQSDvMAUXa1CUGsr/j/44AN9+9vf1rBhw1RYWGjDCAEAAIDg0NUqhAVagNNwBfUvv/xS5eXlnTkkhBiv16uioiIW9MEIeYEpsoJgkBeYYnF5CDm1q1WgrlUpKSk655xzJEkrVqzotPEh9Ph8Pm3fvp0OZzBCXmCKrCAY5AWmaKcbQky6WjVoWOfx6aefdvSwAAAAgC6JwqMdXHzxxZKkTz75xOaRAAAAAKGJwsOQ0xn4WzVlyhRJ0rp161jncQZzOp1KT09vMStAA/ICU2QFwSAvMGVHRkilIZfLFfC+Pn36aPjw4bIsS0uWLOnEUSGUuFwuZWdnt5gVoAF5gSmygmCQF5iyIyMUHoZaW/k/depUSdLChQs7YzgIQV6vVxs3bqSTCIyQF5giKwgGeYEpulqFENOuVg0oPODz+bRnzx46icAIeYEpsoJgkBeYoqtVCAmmq5UkTZgwQREREdq5c6e2bt3awaMDAAAAuhYKj3YSHx+vyZMnS5Lef/99m0cDAAAAhBYKD0MmK/+//e1vS6LwOFM5nU4NGTKETiIwQl5giqwgGOQFpuzIiMOyLKvTX7ULqaqqUmJioiorK5WQkNDivvv27VO/fv3kcDh04MABpaWlddIoAQAAAHPBfMZtL5TDhjweT6v79O3bV6NHj5ZlWfrwww87YVQIJR6PR6tWrTLKCkBeYIqsIBjkBabsyAiFhyHTA0OcbnXmsixLpaWlxlnBmY28wBRZQTDIC0zZkREKj3bWUHgsWrRI1dXVNo8GAAAACA0UHgGceh0PUyNGjNDgwYNVU1PDUQ8AAADg/6HwCODU63iYXlbe4XDohhtukCT97W9/67DxIfS4XC5lZWUZZwVnNvICU2QFwSAvMGVHRuhq1Yq2rPjfvn27zj77bLlcLu3bt4/uVgAAAAgpdLUKYcGs/B8yZIhyc3Pl9Xr19ttvd+CoEEo8Ho+WLl1KJxEYIS8wRVYQDPICU3S1CmHBHhi68cYbJXG61ZnEsixVV1fTSQRGyAtMkRUEg7zAFF2twsh1110nl8ul1atXa+vWrXYPBwAAALAVhUcHSU1N1fTp0yVJL730ks2jAQAAAOxF4WGoLSv/77rrLknS66+/ruPHj7f3kBBiXC6XcnNz6SQCI+QFpsgKgkFeYMqOjFB4GHI6g/9WXXrppRowYIAqKir0z3/+swNGhVDidDqVmprapqzgzENeYIqsIBjkBabsyAipDODUCwjW19cH/Rwul0t33nmnJOnFF19s1/Eh9NTX12v+/PltygrOPOQFpsgKgkFeYMqOjFB4BHDqBQTb6tZbb1VERIQKCgq0Zs2adhodQhXtCxEM8gJTZAXBIC8IVRQeHSw1NVXf//73JUnPPfeczaMBAAAA7EHh0Ql++tOfSpLmzp2rXbt22TsYAAAAwAYUHobcbnebH3vuuefqkksukdfr1fPPP9+Oo0IocbvdmjBhwmllBWcO8gJTZAXBIC8wZUdGKDw6ycMPPyxJeuWVV1ReXm7zaNBRoqOj7R4CuhDyAlNkBcEgLwhVFB6GTneh1tSpU3Xuuefq+PHj+u///u92GhVCicfj0YIFC1jUByPkBabICoJBXmDKjoxQeHQSh8OhX/7yl5Kk2bNnc9QDAAAAZxQKj0509dVX69xzz9XRo0fpcAUAAIAzCoVHJ3I6nXryySclSS+88IJKS0ttHhEAAADQORyWZVl2DyKUVVVVKTExURUVFUpMTDzt57MsS7m5uVqzZo0eeOABzZ49+/QHiZBgWZY8Ho/cbrccDofdw0GIIy8wRVYQDPICU5WVlerevbsqKyuVkJDQKa/JEY9O5nA49Mwzz0iS8vPzVVRUZPOI0J5qamrsHgK6EPICU2QFwSAvCFUUHgHk5+crMzNTY8aMkdS+K/+nTJmiK6+8Uh6Px39xQXR9Ho9Hy5Yto5MIjJAXmCIrCAZ5gSm6WoWQvLw8FRYWavXq1R3y/L///e/ldrv10UcfadGiRR3yGgAAAECooPCwydlnn628vDxJ0kMPPcT/TAAAACCsUXjY6Fe/+pWSkpK0efNm5efn2z0ctAO32233ENCFkBeYIisIBnlBqKKrVSsaulp11Ir/l156SXfddZdiY2NVWFio/v37t/trAAAAACfr6M+4zeGIhyGfz9chz3vHHXfowgsv1LFjx3TPPfeIOrDr8vl8Kikp6bCsILyQF5giKwgGeYEpOzJC4WHI6/V2yPM6nU69/PLLioiI0L///W/961//6pDXQcfzer0qKCjosKwgvJAXmCIrCAZ5gSk7MkLhEQKGDRumn//855Kk++67T2VlZTaPCAAAAGhfFB4h4rHHHlNmZqYOHTqkO++8k1OuAAAAEFYoPAw5HI4Off6oqCj99a9/VUREhN555x29/vrrHfp6aH8Oh0NxcXEdnhWEB/ICU2QFwSAvMGVHRuhq1YrOXvH/zDPP6LHHHlNcXJw2btyoQYMGdfhrAgAA4MxCV6sQ1lkr/x9++GFddNFFqq6u1g033KC6urpOeV2cPp/Pp+LiYjqJwAh5gSmygmCQF5iiq1UI66yV/y6XS2+88YYSExP1+eef65FHHumU18Xp83q92rRpE51EYIS8wBRZQTDIC0zR1QqSpAEDBuiNN96QJM2ePVtz5861eUQAAADA6aHwCFFXXXWVfvazn0mSbr31VhUVFdk8IgAAAKDtKDwM2bHy/+mnn9bFF1+s6upqffvb39aRI0c6fQww53A41LNnTzqJwAh5gSmygmCQF5iiq1UIsmPF/8kOHjyo3Nxc7dmzR1OnTtW8efMUERHR6eMAAABA+KCrVQjJz89XZmamxowZI8meBTiS1KtXL3344YeKjY3VokWLdN9993FxwRDl9XpVVFTEgj4YIS8wRVYQDPICUywuDyF5eXkqLCzU6tWrJdnTcqxBdna23nrrLTkcDr300kt64YUXbBsLAvP5fNq+fTstDGGEvMAUWUEwyAtM0U4XAV155ZV69tlnJUkPPfSQ/vWvf9k8IgAAAMAchUcXMnPmTN15552yLEvXX3+9Fi5caPeQAAAAACMUHoacTvu/VQ6HQ/n5+fre976n+vp6XX311Vq1apXdw8L/43Q6lZ6eHhJZQegjLzBFVhAM8gJTdmSErlatsLurVXNqa2t11VVX6eOPP1ZSUpKWL1+uESNG2D0sAAAAdBF0tQphodQdIioqSu+8844uuOACHTlyRJMnT9bmzZvtHtYZz+v1auPGjSGVFYQu8gJTZAXBIC8wRVerEBZq3SFiY2P173//W6NGjVJpaakmTZqkL774wu5hndF8Pp/27NkTcllBaCIvMEVWEAzyAlN0tUJQkpOTtWjRIuXk5KisrEyTJk3Sxo0b7R4WAAAA0ASFRxeXlJSkRYsWacyYMSovL9fkyZP1+eef2z0sAAAAoBEKD0Oh3B2ie/fuWrhwoS644AIdPnxYkydP1rx58+we1hnH6XRqyJAhIZ0VhA7yAlNkBcEgLzBFV6sQFIpdrQI5duyYrr32Ws2fP18ul0uvvfaabr75ZruHBQAAgBBDV6sQ5vF47B5Cq2JjY/XBBx/oxhtvlNfr1YwZM/T73//e7mGdMTwej1atWtUlsgL7kReYIisIBnmBKTsyQuFhqKscGIqIiNBf/vIXzZw5U5L08MMP65577lF9fb3NIwt/lmWptLS0y2QF9iIvMEVWEAzyAlN2ZITCIww5nU4999xz+v3vfy+Hw6EXX3xRl19+uQ4fPmz30AAAAHCGovAIYz/5yU/03nvvKTY2Vp988onOP/98bd261e5hAQAA4AxE4WHI5XLZPYQ2ueqqq7RixQplZGRox44duuCCC+h41UFcLpeysrK6bFbQucgLTJEVBIO8wJQdGaHwMNSV29JlZWWpoKBA48ePV2VlpaZPn65f/vKX8nq9dg8trDidTvXv379LZwWdh7zAFFlBMMgLTNmREVJpqKt3h0hNTdXixYuVl5cnSXr66ad12WWXqaSkxOaRhQ+Px6OlS5d2+aygc5AXmCIrCAZ5gSm6WoWwcOgOERUVpT/+8Y968803FRsbq8WLF+u8887Tp59+avfQwoJlWaqurg6LrKDjkReYIisIBnmBKbpaoVP88Ic/VEFBgYYNG6b9+/dr4sSJ+uUvf0nLXQAAAHQYCo8zVGZmpgoKCjRjxgz5fD49/fTTGj9+vLZv32730AAAABCGKDwMhWN3iLi4OL3++uv65z//qe7du2v16tU677zz9Oqrr3KItg1cLpdyc3PDMitof+QFpsgKgkFeYMqOjDgsPmG2qKqqSomJiaqsrFRCQoLdw+kwe/bs0c0336ylS5dKkr71rW/pT3/6k/r27WvvwAAAANDu7PiMG/ZHPPbs2aOJEycqMzNTWVlZmjt3bpueJ9zXP6Snp2vx4sX63e9+p8jISH300UfKzMzUK6+8wtEPQ/X19Zo/f37YZwXtg7zAFFlBMMgLTNmRkbAvPNxut2bPnq3CwkItWrRIDz30kI4dO2b3sEKS0+nUww8/rHXr1ik3N1dVVVW64447dOmll2rnzp12D69LoH0hgkFeYIqsIBjkBaEq7AuP3r1769xzz5X0zbUskpOTdfjwYXsHFeKGDx+uFStW6LnnnlN0dLQWLVqkkSNH6ve//z3/gwIAAIA2sb3wWL58ua688kr16dNHDodD7733XpN95syZo4EDByo6Olo5OTltvu7EmjVr5PP5lJ6efpqjDn8ul0szZ87UF198oQkTJujYsWN6+OGHdd5552nZsmV2Dw8AAABdjLstD1q7dq3S0tLUr1+/RtsXLlyokpIS3XDDDcbPdezYMWVnZ+tHP/qRvvvd7za5/+2339aDDz6oOXPmaPz48XrppZc0bdo0FRYWqn///pKknJwc1dbWNnnsxx9/rD59+kiSysvLdfPNN+uVV15pcTy1tbWNnquqqkrSNxdZafjffqfTKZfLJa/XK5/P59+3YbvH42m0LsLlcsnpdAbcfupRBLf7m7fl1EOlgbZHRETI5/PJ6/X6tzkcDrnd7oDbA4391O0DBw7UJ598otdee02PPfaYtmzZookTJ+qGG27Q73//e6WkpHS5OXXU+2RZlsaPHy+XyyXLssJiTq1tZ06nN6fx48fLsiz5fL6wmdOpY2dO7TOniy66qNHvoXCYUzi+T6EwJ8uydPHFF8vlchnPNdTn1NLYmVPb52THGt42dbXKzs7W7NmzNWnSJB09elTx8fGSpGXLlunHP/6xioqK2jYYh0PvvvuuvvOd7/i3nX/++Ro1apRefPFF/7Zhw4bpO9/5jmbNmmX0vLW1tbrkkkt0xx136Kabbmpx3yeeeEJPPvlkk+1vv/22YmJiJH2zEDs7O1sbN27Unj17/PsMGTJEQ4cO1apVq1RaWurfnpWVpf79+2vp0qWqrq72b8/NzVVqaqrmz5/fKFwTJkxQdHS0FixY0GgMl112mWpqahodcXC73br88stVUlKigoIC//a4uDhNnDhRxcXF2rRpk397z549df7556uoqKjRNTtM5vT111/rr3/9q+bPny/LspSQkKCbbrpJU6dO9f8j6Wpz6oj36dJLL1VtbW1YzSkc3yfmxJy6ypwmTJigXbt2acuWLWEzp3B8n0JpTuPHj1dsbKw+/vjjsJlTOL5Pds+pqKhI1113Xad2tWpT4REXF6ctW7YoIyNDCQkJ2rBhgwYNGqTi4mINHTpUJ06caNtgTik86urqFBMTo7lz5+rqq6/27/fAAw9ow4YNRqf8WJal66+/XkOHDtUTTzzR6v7NHfFIT0/XwYMHlZycLCn8K+DW5rRmzRrdf//9WrNmjaRv/gHOmjVLV155pdxud5eck3T675PH49HixYt16aWXKiIiIizm1Np25tT2OdXX12vx4sWaMmWKoqKiwmJO4fg+hcKcLMvSggULNGXKFP9ju/qcwvF9CpU5nfy7yOFwhMWcWho7c2r7nMrKytSrV69OLTzadKqV0+lUbW2tPB6PTpw4oSNHjkiSysrK/Ec/2kNZWZm8Xq/S0tIabU9LS9PBgweNnuM///mP3n77bWVlZfnXj/z1r3/VyJEjm90/KipKUVFRTba73W5FREQ02uZyuZq9+EpDYEy3n/q8bdnudDrldDZdshNoe6Cxm8xp7Nix+vzzz/Xqq6/ql7/8pbZv365rr71WEydO1HPPPadRo0Z1uTmZbDcdu8PhkMPhCKs5tbSdObVtTg2/lBqK9Ya/n+7YA23nfeq6c2r4sBLM76FQn1NL25lT+8wp0O+hQPt3hTkFu505tTynQOPsSG1aXJ6VlaXf/OY3euKJJ9S7d2/95je/0RdffKFf//rXGjt2bHuPsUnFbllWk22BXHjhhfL5fNqwYYP/FqjogDmXy6Uf//jH2rFjhx577DFFRUVp6dKlGj16tGbMmNHokCQAAADQpsLjueee02effaa//e1vevfdd1VdXa3s7GytX79ezzzzTLsNLiUlRS6Xq8nRjZKSkiZHQWCPhIQE/fa3v1VRUZGuv/56WZalN954Q4MHD9YDDzygQ4cO2T1EAAAAhIA2rfFoTnl5uXr06HF6gwmwuDwnJ0dz5szxb8vMzNS3v/1t48XlbZGfn6/8/Hx5vV5t27ZNFRUVSkxM7LDXCxcFBQX62c9+5l9/ExMTo/vvv18PP/ywf41MuGroZOV2u42PyOHMRV5giqwgGOQFpiorK9W9e/dOXePRbtfxaGvRUV1d7T8FSpJ27typDRs2qLi4WJI0c+ZMvfLKK3rttdf05Zdf6qGHHlJxcbHuuuuu9hp6s/Ly8lRYWKjVq1d36OuEm9zcXC1ZskQLFy5Ubm6ujh8/rmeeeUYDBw7UU0895W9PHK5qamrsHgK6EPICU2QFwSAvCFW2X0BwzZo1Ou+883TeeedJ+qbQOO+88/SrX/1KknTddddp9uzZeuqpp3Tuuedq+fLlmjdvnjIyMjp1nKd2FkBgDodDU6dO1eeff673339fWVlZqqqq0uOPP64BAwboiSeeCMurx3s8Hi1btoyswAh5gSmygmCQF5iyIyO2Fx4TJ06UZVlNbq+//rp/n3vuuUe7du1SbW2t1q5dq4svvti+AcOYw+HQVVddpfXr1+sf//iHhg4dqiNHjujJJ59URkaGfvaznxl3JwMAAEDXZnvhgfDndDp13XXXacuWLXr77beVnZ2t6upqPfvssxowYIDy8vK0e/duu4cJAACADkThEUB+fr4yMzM1ZswYu4cSNlwul77//e9r/fr1+uijjzR27FjV1tZqzpw5Gjx4sG6++Wb/Wp+uyo6e2Oi6yAtMkRUEg7wgVLVbV6twVVVVpcTExE5d8X+msCxLy5Yt09NPP61Fixb5t0+aNEkPPfSQpk+f3uzFcAAAAHB67PiMy6c6Qydfbh7tw+FwaOLEiVq4cKEKCgr0wx/+UC6XS0uWLNFVV12lYcOG6cUXX9SxY8fsHqoRn8+nkpISsgIj5AWmyAqCQV5gyo6MUHgY8nq9dg8hrI0ZM0Zvvvmmdu7cqYcffliJiYnatm2b7rnnHqWnp+vRRx/Vzp077R5mi7xerwoKCsgKjJAXmCIrCAZ5gSk7MkLhgZCSnp6u3/3ud9q7d69eeOEFnXXWWTpy5Ij+67/+S2eddZamT5+ujz76iB+oAAAAXQyFRwAsLrdXXFyc7rvvPhUVFem9997TpZdeKsuyNG/ePF155ZU666yzNGvWLJWUlNg9VAAAABig8Ajg1CuXOxwOm0d0ZnK5XPr2t7+tBQsWaNu2bfrJT36i5ORk7d69Wz//+c/Vr18/XX/99VqyZInt57M6HA7FxcWRFRghLzBFVhAM8gJTdmSErlatoKtV6Dlx4oTmzp2rOXPmaNWqVf7tAwcO1C233KIZM2Z0+pXtAQAAuhK6WoUwu/83Hf+nW7duuvnmm/X5559r3bp1uvPOO5WQkKCdO3fq8ccf18CBA3XppZfqrbfe0okTJzptXD6fT8XFxWQFRsgLTJEVBIO8wBRdrUIYi5lD03nnnac//elPOnDggP72t79p8uTJsixLCxcu1PXXX68+ffooLy9PBQUF6uiDe16vV5s2bSIrMEJeYIqsIBjkBaboagW0UUxMjG644QYtXrxYX3/9tR5//HH1799fFRUVmjNnjs4//3ydffbZevzxx1VUVGT3cAEAAM44FB4IOwMHDtQTTzyhnTt3+o98xMTEaMeOHXrqqad0zjnnaPTo0frDH/6g/fv32z1cAACAMwKFRwCnttOlO0TX43Q6NXXqVP3973/XoUOH9Pe//11XXHGFXC6X1q5dq5/85Cfq16+fpkyZoldffVUVFRWn9XoOh0M9e/YkKzBCXmCKrCAY5AWm6GoVguhqFX5KS0s1d+5cvfnmm/rPf/7j3x4REaFLLrlE3/3ud/Xtb39bPXr0sHGUAAAAHceOz7gUHq1oeFMOHz6spKQku4eDdrZr1y699dZbevPNN7V582b/dpfLpcmTJ+vaa6/Vd77zHaWmprb6XF6vVzt27NDgwYPlcrk6ctgIA+QFpsgKgkFeYOrIkSNKTk6mnW4ooi1deBowYIAee+wxffHFFyosLNSvf/1rZWdny+v1auHChbrzzjvVu3dvTZ48WXPmzNGBAwcCPpfP59P27dvJCoyQF5giKwgGeYEp2ukCNho2bJh++ctfasOGDdq+fbueeeYZjR49Wj6fT0uWLFFeXp769u2r8ePH65lnnlFhYWGHt+gFAAAIFxQeQDMGDx6sRx55RKtXr9bOnTv1+9//XhdccIEsy9KKFSv02GOPafjw4RoyZIgeeughLVmyRPX19XYPGwAAIGSxxqMVrPHAyfbu3auPPvpIH374oRYvXqza2lr/fd27d9cFF1ygG2+8UdOnT1f37t3tGyhCntfr1ebNmzVixAjOw0aLyAqCQV5gyo41HhQeAeTn5ys/P19er1fbtm2jqxWaqK6u1sKFC/Xhhx/qo48+Umlpqf8+t9utiy66SNOmTdPll1+uESNG0NoQAACEDLpahSCOeMCE1+vVihUr9Oc//1mrVq1SYWFho/v79Omjyy+/XJdffrmmTp1KlsD/SsIYWUEwyAtM0dUqhNEdAi1xuVy64IILdM011/gXp7/wwgu64oor1K1bN+3fv1+vvfaavv/97yslJUXjx4/Xr3/9a61evZpsnaF8Pp/27NnD+49WkRUEg7zAFF2tgDAxePBg3Xffffr3v/+tw4cP6+OPP9bMmTOVmZkpn8+nFStW6Fe/+pVyc3OVlpam66+/Xq+99pp2795t99ABAAA6BIUH0MGio6N1ySWX6LnnntOWLVu0e/duvfzyy7rmmmuUkJCgsrIyvfXWW7rttts0YMAADR48WHfeeaf++c9/Nlo3AgAA0JWxxqMVrPGAqbZcLba+vl6ff/65FixYoE8++UQFBQXyer2N9snKytKUKVM0ZcoUXXzxxYqPj++I4aOTcXVhmCIrCAZ5gSm6WoUgO1b848xVVVWl5cuXa/HixVq8eLG++OKLRve73W7l5uZq8uTJmjBhgsaOHavY2FibRgsAALoqulqFoIY3pby8XMnJyXYPByHM4/Fo7dq1ysnJkdvtbpfnLCkp0ZIlS/yFyNdff93ofrfbrZycHF188cW6+OKLdeGFF3L9kC6iI/KC8ERWEAzyAlOHDx9Wjx49OrXwIJGGqM/QGsuyVFpa2q5ZSU1N1XXXXafrrrtOkrRr1y598sknWrJkiZYvX67i4mKtWrVKq1at0rPPPiuHw6GsrCxNmDBBF198sS666CKlpqa223jQfjoiLwhPZAXBIC8wZUdGKDyALmTAgAG69dZbdeutt0qSdu/ereXLl/tv27Zt08aNG7Vx40a98MILkqRzzjnHfzRk3LhxGjRoEBczBAAAnY7CI4CTr1wOhKqMjAzddNNNuummmyRJBw8e1KeffuovRDZt2qStW7dq69atevnllyVJPXv21Lhx4/y3nJwcdevWzc5pAACAMwBrPFrRsMbjyJEjnDuPFvl8Pu3du1f9+vWT0xkanaoPHz6s//znP1q2bJlWrFihtWvXqq6urtE+EREROu+88/yFyNixY9WvXz+bRnzmCMW8IDSRFQSDvMBURUWFkpKSWFweSuhqhXBSW1urdevWacWKFf7bwYMHm+yXnp6ucePG6YILLlBubq7OO+88jooAABBG6GoVguhqBVMej0efffaZLrzwwi7TScSyLO3evdtfhKxcuVIbN25scoqh2+3WyJEjlZubqzFjxig3N1eZmZn0iD8NXTEvsAdZQTDIC0zR1SqEUZ+hNZZlqbq6uktlxeFwaMCAARowYICuv/56SVJ1dbVWr16tFStWaNWqVSooKNChQ4e0fv16rV+/Xi+99JIkKTY2Vjk5Of5CJDc3VxkZGSxcN9QV8wJ7kBUEg7zAFF2tANguLi5OkyZN0qRJkyR984Np7969Kigo8N/WrFmj6upq/yL2Bj179vQXIqNHj9aoUaPUu3dvu6YCAABCCIUHgBY5HA6lp6crPT1d3/3udyVJXq9XRUVF/kJk9erV2rhxo0pLSzVv3jzNmzfP//hevXpp1KhROu+88zRq1CiNGjWKIyMAAJyBWOPRCrpawZTP51NZWZlSUlLOyE4iNTU12rhxo78QWbdunb788kv5fL4m+yYlJfmLkIbb4MGDz6jv25meF5gjKwgGeYEpulqFILpaAW13/Phxbdq0SevWrfPfNm/erPr6+ib7xsXF+Y+KnHvuucrOzlZmZqaioqJsGDkAAOGNrlYhqOFNKSsrU48ePeweDkJYfX29Fi9erClTpigiIsLu4YSs2tpabdmyRevWrdP69eu1bt06bdy4USdOnGiyr8vl0jnnnKPs7GxlZWX5/+zdu3eXP1WLvMAUWUEwyAtMlZeXKyUlha5WQFfl8XjsHkLIi4qK8p9e1cDj8aioqEjr1q3T2rVrtXHjRm3cuFFHjhzRli1btGXLFr355pv+/VNSUpSVldWoGMnMzFR0dLQdU2oz8gJTZAXBIC8IVRQeAGzndrs1fPhwDR8+XDfddJOkb7pp7du3Txs3btSmTZv8fxYVFamsrEyffPKJPvnkE/9zuFwuDR061F+IjBw5UsOHD1f//v05zxkAgBBA4RFAfn6+8vPzm1xIDUDncDgc6tevn/r166fp06f7t584cUKFhYWNCpKGoyOFhYUqLCzUW2+95d8/NjbWX9Q03EaMGKG+fft2+dO1AADoSljj0YqGNR4VFRVKTEy0ezgIYQ0XbYqLi+MDbSdrODpyciGyZcsWFRUVNbuQXZISEhKaFCPDhw9Xr169OuX9Iy8wRVYQDPICU5WVlerevTuLy0MJhQdMWZYlj8cjt9vND/sQUV9fr+3bt/vXiTTctm3bFvBoZlJSUqNiJDMzU+ecc067L2gnLzBFVhAM8gJTFB4hiK5WMFVfX68FCxbosssuo5NIiKutrdW2bduaFCQ7duxo9roj0jdHSM4555wmt7POOkuRkZFBj4G8wBRZQTDIC0zR1QoAOkFUVJRGjhypkSNHNtpeU1OjoqIibd682V+MfPnll/rqq69UVVXlv1L7yVwul8466ywNGzasSVHCRUcBAPg/FB4A8P9ER0crOztb2dnZjbbX1tbqq6++0tatW7V161Z9+eWX/r9XV1dr27Zt2rZtm95///1Gj0tLS/MXIQ2FyZAhQ5SRkdGZ0wIAICRQeABAK6KiopSZmanMzMxG2y3L0v79+/1FyMlFyb59+3To0CEdOnRIy5Yta/S4yMhIDRw4UImJifrkk080dOhQDRkyRGeffbb69OlD+18AQFhijUcrWFwOUyzow8mOHj2qoqKiJkXJV199pdra2oCP69atmwYPHqyzzz5bQ4YM8d/OPvtspaamkq0zED9bEAzyAlMsLg9BFB4wRQtDmPB6vdq7d69/LUlxcbF27Nihbdu2aefOnS1ecTg+Pt5fhJxclAwePFg9evQgd2GKny0IBnmBKTsKD061MtTShwFA+iYjy5Yto5MIWuRyuZSRkaE+ffqorq5O9913nz8v9fX12r17t7Zt26bt27dr+/bt/r/v3r1bR48e1bp167Ru3bomz5uQkKBBgwbprLPO8v/ZcEtPT5fbzY/7roqfLQgGeYEpOz7b8psIAEJERESEBg8erMGDBze5r6amRl9//bW/IDm5KNm3b5+qqqq0YcMGbdiwoclj3W63MjIymi1KBg0apLi4uE6YHQDgTEfhAQBdQHR0dLML3CXpxIkT2rVrl7766it99dVX+vrrr/1/37lzp78r11dffdXsc6empjYpSgYNGqRBgwapV69eLHYHALQLCg+gHXE6C4LRXnnp1q2bhg0bpmHDhjW5z+fzaf/+/c0WJV9//bXKy8tVUlKikpISrVy5ssnjo6KilJGRoQEDBmjAgAEaOHCg/+8DBgxQWloa55F3An62IBjkBaGKxeWtaFhc3pkLbwCgs1RUVPiLkZOLkq+++kp79uwJeCX3BtHR0QGLkoEDByolJYXCBABCkB2fcSk8WtHwphw5coSrEKNFPp9PZWVlSklJ4dQUtKor5KW+vl779u3Tzp07tWvXLv+t4eu9e/eqtV8hMTExAQuTjIwMChMDXSErCB3kBaYqKiqUlJREV6tQ5PV67R4CQpzX61VBQYEuu+wyftijVV0hLxEREf4ioTl1dXXau3dvwMJk//79On78uAoLC1VYWNjsc0RHR6t///7+W0ZGRqOv+/Xrp+jo6A6cZejrCllB6CAvMGXHZ1sKjwDy8/OVn59PwQEAAURGRvoXoTentrZWxcXFzRYlu3bt0oEDB1RTU6Nt27Zp27ZtAV8nLS2tUTFy6q1nz54cNQGALoDCI4C8vDzl5eX5T7UCAAQnKirKf5HD5tTW1mrfvn0qLi5u9rZ7924dP35chw4d0qFDh7R69epmnyc6Olrp6ekBC5N+/fopJiamI6cKADBA4WGI/01DaxwOB1eKhTHy8k1h0tIRE8uydOTIkYCFSXFxsfbv36+amhr/tU0CSUpKUr9+/Vq8hWoDEbKCYJAXmLIjIywubwVdrQAgdNXV1Wn//v1NjpSc/HV1dbXRc8XHx6tfv37q27dvwOIkOTmZD3QAwgJdrUIQXa1gyufzae/everXrx8L+tAq8tJ5qqqqtHfv3hZvR44cMXqu6OhofxHSXIHSt29fpaamyuVytdv4yQqCQV5giq5WIYxF5miN1+vVpk2b1Lt3b37Yo1XkpfMkJCQEvOp7g2PHjmnfvn0tFielpaWqqanRjh07tGPHjoDP5XK51KtXL/Xp06fFW48ePYyOnpAVBIO8wBRdrQAAsEFsbKzOPvtsnX322QH3qa2t1f79+1ssTg4cOCCv16t9+/Zp3759Lb5mZGSkevfu3WqBwsJ4AOGCwgMAAANRUVEaOHCgBg4cGHAfj8ejQ4cOaf/+/Y1uBw4caPR1aWmp6urqtHv3bu3evbvF1+3WrZu6d++us846S3379m22OOndu7fi4+Pbe8oA0K4oPAyxmBCtcTgcXE8AxshLeHK73erbt6/69u3b4n51dXU6ePBgkwLl1NuRI0d04sQJnThxQgcOHGjxOWNjY9WrV69mb7179/b/PTU1VREREe05bYQQfrbAFF2tQhBdrQAAdmkoOForUI4ePRrU86akpDRblJx6S0pK4gMsEKbs+IzLEQ9DLC5Ha7xer3bs2KHBgwe3a0cbhCfyAhPdunVTRkaG6uvrNXbs2IBZqa6u1sGDB1u8HThwQIcOHZLX61VZWZnKysq0efPmFl8/MjIyYFFyctGSlpambt26dcS3AEHiZwtMsbg8hPl8PruHgBDn8/m0fft2DRo0iB/2aBV5gSmTrMTFxWnw4MEaPHhwq89VXl7ebFFy6rYjR46orq7Ofz2U1sTHxystLU2pqamt/tm9e3eOpHQQfrbAlB2fbSk8AAA4QzidTvXs2VM9e/bUyJEjW9y3trZWhw4dCliYnFy01NbW6ujRozp69GiLrYYbRERENFuQNLetZ8+erEkBwgSFBwAAaCIqKkr9+/dX//79W9zPsixVVlaqpKREJSUlOnToUIt/VlZWqr6+3qjlcIPk5GTjoymxsbEcTQFCFIWHIS7Cg9Y4nU6lp6eTFRghLzAV6llxOBzq3r27unfv3uJ1UBrU1NSotLS01QLl0KFDKi0tlc/n0+HDh3X48GF9+eWXrT5/dHS0/6hOoFtKSor/7+F22leo5wWhw46M0NWqFXS1AgDAHg1Fh0mRcujQIZ04cSLo13C73Y0KkeaKk5NvPXr0YO0EwoIdn3EpPFrR8KYcPnxYSUlJdg8HIczr9Wrz5s0aMWIEv5TQKvICU2TFXHV1tUpLS5u9lZWVNdkWbBti6ZsjPMnJya0WKCffHxUV1QGzbR55gakjR44oOTmZdrqhiK5WaI3P59OePXuUmZnJD3u0irzAFFkxFxcXp7i4uBavLn+ympqaZguSQIXK4cOHZVmWysvLVV5erq1btxq9Tnx8vHr06KGUlBT16NGj0d8D/dnW9sTkBaboagUAANBJoqOj1a9fP/Xr189of4/Ho/LycuNCpaysTF6v19/xa9euXcZj69atW6vFyamFTGxsbBu/E0DnoPAAAAAw4Ha7lZaWprS0NKP9fT6fKioqVF5errKysmb/bG6bx+PRiRMntGfPHu3Zs8d4fJGRkUpJSVFkZKQGDBiglJSUgEVKw58JCQlhtbgeoY3CwxDdIdAap9OpIUOGkBUYIS8wRVa6LqfTqeTkZCUnJ2vIkCFGj7EsS1VVVcZFSsOftbW1qqur0/79+yXJ+OiK2+32j9Hk1qNHDyUnJyshIYFMdnF0tQpBdLUCAAChzLIsHT9+PGBREqhwOX78eJtf0+l0KikpybhQabh1796dtSchwo7PuBzxMOTxeOweAkKcx+PR2rVrlZOTI7ebf1poGXmBKbKC1jgcDsXGxio2NlZ9+/bV2rVrNXny5FbzcuLECZWXl+vIkSMqLy/3Xy+ltduxY8fk8/n8xUywunfvHlSxkpycrKSkJK5g387s+GzLTzBDHBhCayzLUmlpKVmBEfICU2QFwQgmL926dQtqcX2D2tpa4yLl5FtVVZUkqaKiQhUVFfr666+Det24uDglJSU1unXv3r3Jtubu68yWxl2FHT9Twr7wOHr0qCZPnqz6+np5vV7df//9uuOOO+weFgAAQJcUFRWl3r17q3fv3kE9rr6+XkeOHAmqWCkvL1dFRYWkb67TUl1dHdSC+wbdunULulhpuHXr1o0F+O0k7AuPmJgYLVu2TDExMTp+/LhGjBiha665Rj169LB7aAAAAGeMiIgIpaamKjU1NajHeb1eVVRU6PDhw6qoqNCRI0ea3AJtr6yslGVZOnHihE6cOOFffB+MyMjIgMVKa0VMfHw8RctJwr7wcLlciomJkfTNhYK8Xm+bDi2xEAqtcblcysrKIiswQl5giqwgGOGYF5fL5W8FHCyfz6eqqirjQuXU+7xer+rq6lRSUqKSkpI2jb179+7+W2JiYqOvm9t28tfx8fEd1n3KjozY3tVq+fLlevbZZ7V27VodOHBA7777rr7zne802mfOnDl69tlndeDAAQ0fPlyzZ8/WRRddZPwaFRUVmjBhgrZv365nn31WeXl5xo+lqxUAAMCZx7IsVVdXt1qsBNpeV1d32mNwOBxKTExssThpqaBJTEwM2GTgjOxqdezYMWVnZ+tHP/qRvvvd7za5/+2339aDDz6oOXPmaPz48XrppZc0bdo0FRYWqn///pKknJwc1dbWNnnsxx9/rD59+qh79+7auHGjDh06pGuuuUbXXnttwIv/1NbWNnquhoVQNTU16tatm6RvWsi5XC55vd5Gl5tv2O7xeBodVXG5XHI6nQG319fXNxpDQ0BO7TYQaHtERIR8Pp+8Xq9/m8PhkNvtDrg90NiZU9vn5PV6tXLlSl144YVyu91hMafWtjOnts/J4/Fo5cqVGjt2rCIjI8NiTuH4PoXCnCTp008/1dixY/3/Q9nV5xSO71OozOnk30Wn6qpzamnsHT2n+Ph4xcTENFrPYjInn8+nmpoaHTlyRFVVVTp69KjKyspUUVGhyspKVVZWqqqqyl+0NPz95PtrampkWZZ/++7du9UWcXFx6t69uxISEvynhiUmJtqy4N72wmPatGmaNm1awPv/8Ic/6LbbbtPtt98uSZo9e7YWLFigF198UbNmzZIkrV271ui10tLSlJWVpeXLl+t73/tes/vMmjVLTz75ZJPtS5cu9Z+ylZ6eruzsbG3evLnRAqchQ4Zo6NChWrt2rUpLS/3bs7Ky1L9/f3322Weqrq72b8/NzVVqaqoWL17c6B/MhAkTFB0drQULFjQaw2WXXaaamhotW7bMv83tduvyyy9XWVmZCgoK/Nvj4uI0ceJE7d27V5s2bfJv79mzp84//3zt2LFD27dv929nTu03J4/HE3ZzCsf3KVTmtGjRorCbkxR+75Odcxo/fryOHTumRYsWhc2cwvF9CqU5Sd/8Llq8eHHYzKmrv08jR47U/Pnz/e2BTea0cOFCHTt2TMeOHVNNTY0yMzO1e/dubdy40b+9rq5OsbGxOnDggA4ePOjffvz4cZ04cULS/y3KDwW2n2p1MofD0ehUq7q6OsXExGju3Lm6+uqr/fs98MAD2rBhQ6OQBXLo0CF169ZNCQkJqqqq0tixY/XWW28pKyur2f2bO+KRnp6ugwcP+oMSrlU9czq9OTX8kL/00ksVERERFnNqbTtzavuc6uvrtXjxYk2ZMkVRUVFhMadwfJ9CYU6WZWnBggWaMmWK/7FdfU7h+D6FypxO/l106qLmrjqnlsbOnALPybIsfxexyspKVVRU6OjRo6qqqtLhw4e1f/9+Pf/882fWqVYtKSsrk9frbXJaVFpamg4ePGj0HHv37tVtt90my7JkWZbuvffegEWH9E2LuOYOPbnd7iYXrnG5XM0uzAl0Ll2g7YEuiBPMdqfT2ezio0DbA42dOZ3+nBwOhxwOR1jNqaXtzKltc2r4peR2u/3P2dXn1BzmdPpzaviwEszvoVCfU0vbmVP7zCnQ76FA+3eFOQW7nTmpxS5i5eXlev7555u9r6OEdOHR4NSK3bIs49ZkOTk52rBhw2mPobnAASdzuVzKzc0lKzBCXmCKrCAY5AWm7MhISBceKSkpcrlcTY5ulJSUBFwc3lGaqyKBkzmdzqB7k+PMRV5giqwgGOQFpuz4bBvSn6YjIyOVk5OjhQsXNtq+cOFCjRs3rkNfOz8/X5mZmRozZowkNTkvDzhVfX295s+fT1ZghLzAFFlBMMgLTNmREduPeFRXV2vHjh3+r3fu3KkNGzYoOTlZ/fv318yZM3XTTTdp9OjRGjt2rF5++WUVFxfrrrvu6tBx5eXlKS8vz9/jGDBx6kIwoCXkBabICoJBXhCqbC881qxZo0mTJvm/njlzpiRpxowZev3113XdddepvLxcTz31lA4cOKARI0Zo3rx5ysjIsGvIAAAAAIJke+ExceJEtdbR95577tE999zTSSMCAAAA0N5C6joeoajhVKuKigpOuUKLLMtSdXW14uLijLuu4cxFXmCKrCAY5AWmKisr1b179069jkdILy6306mLywET0dHRdg8BXQh5gSmygmCQF4QqCo8A8vLyVFhYqNWrV0tioRZa5/F4tGDBArICI+QFpsgKgkFeYMqOjFB4AAAAAOhwFB4AAAAAOhyFBwAAAIAOR1erAPLz85Wfny+v16tt27bR1QqtsixLHo9HbrebTiJoFXmBKbKCYJAXmLKjqxWFRytopwtTtDBEMMgLTJEVBIO8wBTtdEMY3SHQGo/Ho2XLlpEVGCEvMEVWEAzyAlN0tQIAAAAQlig8AAAAAHQ4Cg+gHbndbruHgC6EvMAUWUEwyAtCFYvLW9GwuLwzF94AAAAAHcmOz7gc8QggPz9fmZmZGjNmjCTJ5/PZPCKEOp/Pp5KSErICI+QFpsgKgkFeYMqOjFB4BJCXl6fCwkKtXr1akuT1em0eEUKd1+tVQUEBWYER8gJTZAXBIC8wZUdGKDwAAAAAdDgKDwAAAAAdjsLDEFf/RGscDgdXioUx8gJTZAXBIC8wZUdG6GrVCrpaAQAAINzQ1SqE0R0CrfH5fCouLiYrMEJeYIqsIBjkBaboahVCTm2nS3cItMbr9WrTpk1kBUbIC0yRFQSDvMAUXa1CyKntdAEAAAC0HYUHAAAAgA5H4WGI7hBojcPhUM+ePckKjJAXmCIrCAZ5gSm6WoUguloBAAAg3NDVKoSxSAut8Xq9KioqIiswQl5giqwgGOQFplhcHsJoS4fW+Hw+bd++nazACHmBKbKCYJAXmKKdLgAAAICwROEBAAAAoMNReBhyOvlWoWVOp1Pp6elkBUbIC0yRFQSDvMCUHRmhq1UA+fn5ys/Pl9fr1bZt2+hqBQAAgLBBV6sQcuqVy+kOgdZ4vV5t3LiRrMAIeYEpsoJgkBeYoqtVCKM7BFrj8/m0Z88esgIj5AWmyAqCQV5giq5WAAAAAMIShQcAAACADkfhYYjuEGiN0+nUkCFDyAqMkBeYIisIBnmBKbpahSA7VvwDAAAAHYmuViHM4/HYPQSEOI/Ho1WrVpEVGCEvMEVWEAzyAlN2ZITCwxAHhtAay7JUWlpKVmCEvMAUWUEwyAtM2ZERCg8AAAAAHY7CAwAAAECHo/Aw5HK57B4CQpzL5VJWVhZZgRHyAlNkBcEgLzBlR0YoPALIz89XZmamxowZI4l2umid0+lU//79yQqMkBeYIisIBnmBKTsyQioDyMvLU2FhoVavXi2JrlZoncfj0dKlS8kKjJAXmCIrCAZ5gSm6WoUwukOgNZZlqbq6mqzACHmBKbKCYJAXmKKrFQAAAICwROEBAAAAoMNReBiiOwRa43K5lJubS1ZghLzAFFlBMMgLTNmREXenv2IXRXcItMbpdCo1NdXuYaCLIC8wRVYQDPICU3S1CmH19fV2DwEhrr6+XvPnzycrMEJeYIqsIBjkBabsyAiFB9COaF+IYJAXmCIrCAZ5Qaii8AAAAADQ4Sg8AAAAAHQ4h8UVZlpUVVWlxMREVVRUKDEx0e7hIIQ1XLQpLi5ODofD7uEgxJEXmCIrCAZ5ganKykp1795dlZWVSkhI6JTX5IgH0I6io6PtHgK6EPICU2QFwSAvCFUUHoZYqIXWeDweLViwgKzACHmBKbKCYJAXmLIjIxQeAAAAADochQcAAACADkfhAQAAAKDD0dUqgPz8fOXn58vr9Wrbtm10tUKrLMuSx+OR2+2mkwhaRV5giqwgGOQFpuzoakXh0Qra6cIULQwRDPICU2QFwSAvMEU73RBGdwi0xuPxaNmyZWQFRsgLTJEVBIO8wBRdrQAAAACEJQoPAAAAAB2OwgNoR2632+4hoAshLzBFVhAM8oJQxeLyVjQsLu/MhTcAAABAR7LjMy5HPAz5fD67h4AQ5/P5VFJSQlZghLzAFFlBMMgLTNmREQoPQ16v1+4hIMR5vV4VFBSQFRghLzBFVhAM8gJTdmSEwgMAAABAh6PwAAAAANDhKDwMcfVPtMbhcHClWBgjLzBFVhAM8gJTdmSErlatoKsVAAAAwg1drUIY3SHQGp/Pp+LiYrICI+QFpsgKgkFeYIquViGM7hBojdfr1aZNm8gKjJAXmCIrCAZ5gSm6WgEAAAAISxQeAAAAADochYchukOgNQ6HQz179iQrMEJeYIqsIBjkBaboahWC6GoFAACAcENXqxDGIi20xuv1qqioiKzACHmBKbKCYJAXmGJxeQijLR1a4/P5tH37drICI+QFpsgKgkFeYIp2ugAAAADCEoUHAAAAgA53xhQex48fV0ZGhn7605+26fFO5xnzrUIbOZ1OpaenkxUYIS8wRVYQDPICU3ZkxN3pr2iTp59+Wueff36bH+9yudpxNAhHLpdL2dnZdg8DXQR5gSmygmCQF5iy47PtGVEOb9++XVu3btUVV1zR5uegOwRa4/V6tXHjRrICI+QFpsgKgkFeYOqM7Gq1fPlyXXnllerTp48cDofee++9JvvMmTNHAwcOVHR0tHJycvTpp58G9Ro//elPNWvWrNMaJ90h0Bqfz6c9e/aQFRghLzBFVhAM8gJTZ2RXq2PHjik7O1t//OMfm73/7bff1oMPPqhf/OIXWr9+vS666CJNmzZNxcXF/n1ycnI0YsSIJrf9+/fr/fff19lnn62zzz67s6YEAAAA4BS2r/GYNm2apk2bFvD+P/zhD7rtttt0++23S5Jmz56tBQsW6MUXX/QfxVi7dm3Ax3/++ef6xz/+oblz56q6ulr19fVKSEjQr371q2b3r62tVW1trf/ryspKSdKRI0f825xOp1wul7xeb6NqsWG7x+PRyReEd7lccjqdAbfX19c3GoPb/c3b4vF4jLZHRETI5/M1OmTmcDjkdrsDbg80dubU9jl5PB4dP35clZWVioiICIs5tbadObV9TvX19Tp+/LgOHz6sqKiosJhTOL5PoTAny7L8WWl4bFefUzi+T6Eyp5N/FzkcjrCYU0tjZ05tn1PDZ9uTx9rhrBAiyXr33Xf9X9fW1loul8t65513Gu13//33WxdffHHQz//nP//Z+slPftLiPo8//rgliRs3bty4cePGjRu3sL999dVXQX+mbivbj3i0pKysTF6vV2lpaY22p6Wl6eDBgx3ymo899phmzpzp/7qiokIZGRkqLi5WYmJih7wmwkNVVZXS09O1Z88eJSQk2D0chDjyAlNkBcEgLzBVWVmp/v37Kzk5udNeM6QLjwanHiq0LKvJNhO33HJLq/tERUUpKiqqyfbExET+AcNIQkICWYEx8gJTZAXBIC8w1ZnX87B9cXlLUlJS5HK5mhzdKCkpaXIUBAAAAEDoCunCIzIyUjk5OVq4cGGj7QsXLtS4ceNsGhUAAACAYNl+qlV1dbV27Njh/3rnzp3asGGDkpOT1b9/f82cOVM33XSTRo8erbFjx+rll19WcXGx7rrrrk4ZX1RUlB5//PFmT78CTkZWEAzyAlNkBcEgLzBlR1YcltWZPbSaWrp0qSZNmtRk+4wZM/T6669L+uYCgr/73e904MABjRgxQs8//7wuvvjiTh4pAAAAgLayvfAAAAAAEP5Ceo0HAAAAgPBA4QEAAACgw1F4AAAAAOhwFB4tmDNnjgYOHKjo6Gjl5OTo008/tXtI6GSzZs3SmDFjFB8fr9TUVH3nO99RUVFRo30sy9ITTzyhPn36qFu3bpo4caK2bNnSaJ/a2lrdd999SklJUWxsrK666irt3bu3M6eCTjZr1iw5HA49+OCD/m1kBSfbt2+fbrzxRvXo0UMxMTE699xztXbtWv/95AWS5PF49Mtf/lIDBw5Ut27dNGjQID311FPy+Xz+fcjKmWv58uW68sor1adPHzkcDr333nuN7m+vbBw5ckQ33XSTEhMTlZiYqJtuukkVFRXBD9hCs/7xj39YERER1v/8z/9YhYWF1gMPPGDFxsZau3fvtnto6ESXXXaZ9ec//9navHmztWHDBmv69OlW//79rerqav8+zzzzjBUfH2/97//+r/XFF19Y1113ndW7d2+rqqrKv89dd91l9e3b11q4cKG1bt06a9KkSVZ2drbl8XjsmBY6WEFBgTVgwAArKyvLeuCBB/zbyQoaHD582MrIyLBuueUWa9WqVdbOnTutRYsWWTt27PDvQ15gWZb1m9/8xurRo4f10UcfWTt37rTmzp1rxcXFWbNnz/bvQ1bOXPPmzbN+8YtfWP/7v/9rSbLefffdRve3VzYuv/xya8SIEdaKFSusFStWWCNGjLC+9a1vBT1eCo8AcnNzrbvuuqvRtnPOOcd69NFHbRoRQkFJSYklyVq2bJllWZbl8/msXr16Wc8884x/n5qaGisxMdH605/+ZFmWZVVUVFgRERHWP/7xD/8++/bts5xOpzV//vzOnQA63NGjR60hQ4ZYCxcutCZMmOAvPMgKTvbII49YF154YcD7yQsaTJ8+3br11lsbbbvmmmusG2+80bIssoL/c2rh0V7ZKCwstCRZn3/+uX+flStXWpKsrVu3BjVGTrVqRl1dndauXatLL7200fZLL71UK1assGlUCAWVlZWSpOTkZEnfXPDy4MGDjbISFRWlCRMm+LOydu1a1dfXN9qnT58+GjFiBHkKQ3l5eZo+fbqmTp3aaDtZwck++OADjR49Wt/73veUmpqq8847T//zP//jv5+8oMGFF16oxYsXa9u2bZKkjRs36rPPPtMVV1whiawgsPbKxsqVK5WYmKjzzz/fv88FF1ygxMTEoPNj+5XLQ1FZWZm8Xq/S0tIabU9LS9PBgwdtGhXsZlmWZs6cqQsvvFAjRoyQJH8emsvK7t27/ftERkYqKSmpyT7kKbz84x//0Lp167R69eom95EVnOzrr7/Wiy++qJkzZ+rnP/+5CgoKdP/99ysqKko333wzeYHfI488osrKSp1zzjlyuVzyer16+umn9cMf/lASP1sQWHtl4+DBg0pNTW3y/KmpqUHnh8KjBQ6Ho9HXlmU12YYzx7333qtNmzbps88+a3JfW7JCnsLLnj179MADD+jjjz9WdHR0wP3ICiTJ5/Np9OjR+u1vfytJOu+887Rlyxa9+OKLuvnmm/37kRe8/fbb+tvf/qY333xTw4cP14YNG/Tggw+qT58+mjFjhn8/soJA2iMbze3flvxwqlUzUlJS5HK5mlRxJSUlTapGnBnuu+8+ffDBB1qyZIn69evn396rVy9JajErvXr1Ul1dnY4cORJwH3R9a9euVUlJiXJycuR2u+V2u7Vs2TK98MILcrvd/vearECSevfurczMzEbbhg0bpuLiYkn8bMH/efjhh/Xoo4/qBz/4gUaOHKmbbrpJDz30kGbNmiWJrCCw9spGr169dOjQoSbPX1paGnR+KDyaERkZqZycHC1cuLDR9oULF2rcuHE2jQp2sCxL9957r9555x198sknGjhwYKP7Bw4cqF69ejXKSl1dnZYtW+bPSk5OjiIiIhrtc+DAAW3evJk8hZEpU6boiy++0IYNG/y30aNH64YbbtCGDRs0aNAgsgK/8ePHN2nNvW3bNmVkZEjiZwv+z/Hjx+V0Nv645nK5/O10yQoCaa9sjB07VpWVlSooKPDvs2rVKlVWVgafn6CWop9BGtrpvvrqq1ZhYaH14IMPWrGxsdauXbvsHho60d13320lJiZaS5cutQ4cOOC/HT9+3L/PM888YyUmJlrvvPOO9cUXX1g//OEPm21V169fP2vRokXWunXrrMmTJ9PG8AxwclcryyIr+D8FBQWW2+22nn76aWv79u3W3//+dysmJsb629/+5t+HvMCyLGvGjBlW3759/e1033nnHSslJcX62c9+5t+HrJy5jh49aq1fv95av369Jcn6wx/+YK1fv95/+Yf2ysbll19uZWVlWStXrrRWrlxpjRw5kna67S0/P9/KyMiwIiMjrVGjRvlbqOLMIanZ25///Gf/Pj6fz3r88cetXr16WVFRUdbFF19sffHFF42e58SJE9a9995rJScnW926dbO+9a1vWcXFxZ08G3S2UwsPsoKTffjhh9aIESOsqKgo65xzzrFefvnlRveTF1iWZVVVVVkPPPCA1b9/fys6OtoaNGiQ9Ytf/MKqra3170NWzlxLlixp9nPKjBkzLMtqv2yUl5dbN9xwgxUfH2/Fx8dbN9xwg3XkyJGgx+uwLMsK8sgNAAAAAASFNR4AAAAAOhyFBwAAAIAOR+EBAAAAoMNReAAAAADocBQeAAAAADochQcAAACADkfhAQAAAKDDUXgAAAAA6HAUHgAAAAA6HIUHAAAAgA5H4QEAAACgw7ntHgAA4Mw2ceJEZWVlKTo6Wq+88ooiIyN111136YknnrB7aACAdsQRDwCA7f7yl78oNjZWq1at0u9+9zs99dRTWrhwod3DAgC0I4dlWZbdgwAAnLkmTpwor9erTz/91L8tNzdXkydP1jPPPGPjyAAA7YkjHgAA22VlZTX6unfv3iopKbFpNACAjkDhAQCwXURERKOvHQ6HfD6fTaMBAHQECg8AAAAAHY7CAwAAAECHo/AAAAAA0OHoagUAAACgw3HEAwAAAECHo/AAAAAA0OEoPAAAAAB0OAoPAAAAAB2OwgMAAABAh6PwAAAAANDhKDwAAAAAdDgKDwAAAAAdjsIDAAAAQIej8AAAAADQ4Sg8AAAAAHS4/x91Bgvu2W9r1gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Function for plotting function\n", "def plot_function(x_limits, y_limits):\n", " # x values\n", " x = np.linspace(x_limits[0], x_limits[1], 1000)\n", " y = 1 / (x + 1)\n", "\n", " plt.figure(figsize=(9, 5))\n", " \n", " # Plot\n", " plt.plot(x, y, label=r'$\\frac{1}{n+1}$', color = 'black')\n", " \n", " # Limits\n", " plt.xlim(x_limits)\n", " plt.ylim(y_limits)\n", " plt.yscale('log')\n", " \n", " # Labels & co.\n", " plt.title(r'Upper Bound Addition')\n", " plt.xlabel('n')\n", " plt.ylabel('ε')\n", " plt.legend()\n", " \n", " plt.grid(True, which=\"major\", ls=\"--\", c='0.7')\n", " plt.show()\n", "\n", "x_limits = [0, 1000] # Begrenzungen für x\n", "y_limits = [0.0001, 1] # Begrenzungen für y (log-skaliert)\n", "plot_function(x_limits, y_limits)" ] }, { "cell_type": "markdown", "id": "bf2d14f7", "metadata": {}, "source": [ "## The Generality of Conformal Prediction" ] }, { "cell_type": "markdown", "id": "d9f41449", "metadata": {}, "source": [ "### Conditional Class Probabilities" ] }, { "cell_type": "code", "execution_count": 101, "id": "2fffd298", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coverage for class 0: 0.93\n", "Coverage for class 1: 1.00\n", "Coverage for class 2: 0.97\n", "Coverage for class 3: 0.96\n", "Coverage for class 4: 0.94\n", "Coverage for class 5: 0.95\n", "Coverage for class 6: 0.95\n", "Overall Coverage: 0.95\n" ] } ], "source": [ "# Counters\n", "n_classes = 7\n", "class_counts = [0] * n_classes\n", "class_matches = [0] * n_classes\n", "\n", "# Iterating throug X_new\n", "for i in range(len(X_new)):\n", " prob_sample = model.predict_proba(X_new[i:i+1])[0]\n", " uncertainty_scores = 1 - prob_sample\n", " prediction_set = [cls for cls, score in enumerate(uncertainty_scores) if score <= qhat]\n", "\n", " # Updating counters\n", " true_label = y_new[i]\n", " class_counts[true_label] += 1\n", " if true_label in prediction_set:\n", " class_matches[true_label] += 1\n", "\n", "# Coverage probabilities for each class\n", "class_coverages = [match / count if count > 0 else 0 for match, count in zip(class_matches, class_counts)]\n", "\n", "# Results\n", "for i, coverage in enumerate(class_coverages):\n", " print(f'Coverage for class {i}: {coverage:.2f}')\n", "\n", "print(f'Overall Coverage: {sum(class_matches) / sum(class_counts):.2f}')" ] }, { "cell_type": "markdown", "id": "09083209", "metadata": {}, "source": [ "## Conformal Regression" ] }, { "cell_type": "markdown", "id": "d0e94a15", "metadata": {}, "source": [ "### Wine Quality Data" ] }, { "cell_type": "code", "execution_count": 103, "id": "5a3620f3", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
nameroletypedemographicdescriptionunitsmissing_values
0fixed_acidityFeatureContinuousNoneNoneNoneno
1volatile_acidityFeatureContinuousNoneNoneNoneno
2citric_acidFeatureContinuousNoneNoneNoneno
3residual_sugarFeatureContinuousNoneNoneNoneno
4chloridesFeatureContinuousNoneNoneNoneno
5free_sulfur_dioxideFeatureContinuousNoneNoneNoneno
6total_sulfur_dioxideFeatureContinuousNoneNoneNoneno
7densityFeatureContinuousNoneNoneNoneno
8pHFeatureContinuousNoneNoneNoneno
9sulphatesFeatureContinuousNoneNoneNoneno
10alcoholFeatureContinuousNoneNoneNoneno
11qualityTargetIntegerNonescore between 0 and 10Noneno
\n", "
" ], "text/plain": [ " name role type demographic \\\n", "0 fixed_acidity Feature Continuous None \n", "1 volatile_acidity Feature Continuous None \n", "2 citric_acid Feature Continuous None \n", "3 residual_sugar Feature Continuous None \n", "4 chlorides Feature Continuous None \n", "5 free_sulfur_dioxide Feature Continuous None \n", "6 total_sulfur_dioxide Feature Continuous None \n", "7 density Feature Continuous None \n", "8 pH Feature Continuous None \n", "9 sulphates Feature Continuous None \n", "10 alcohol Feature Continuous None \n", "11 quality Target Integer None \n", "\n", " description units missing_values \n", "0 None None no \n", "1 None None no \n", "2 None None no \n", "3 None None no \n", "4 None None no \n", "5 None None no \n", "6 None None no \n", "7 None None no \n", "8 None None no \n", "9 None None no \n", "10 None None no \n", "11 score between 0 and 10 None no " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from ucimlrepo import fetch_ucirepo \n", " \n", "# fetch dataset \n", "wine_quality = fetch_ucirepo(id=186) \n", " \n", "# data (as pandas dataframes) \n", "X = wine_quality.data.features \n", "y = np.array(wine_quality.data.targets, dtype=float)\n", " \n", "# variable information \n", "display(wine_quality.variables)" ] }, { "cell_type": "markdown", "id": "1b1452a4", "metadata": {}, "source": [ "### Splitting Data" ] }, { "cell_type": "code", "execution_count": 104, "id": "acba68f2", "metadata": {}, "outputs": [], "source": [ "# Training and remaining sets\n", "X_temp, X_train, y_temp, y_train = train_test_split(X, y, test_size=2500, random_state=42)\n", "\n", "# Test and remaining sets\n", "X_temp2, X_test, y_temp2, y_test = train_test_split(X_temp, y_temp, test_size=1000, random_state=42)\n", "\n", "# Calibration and conformal prediction sets\n", "X_new, X_calib, y_new, y_calib = train_test_split(X_temp2, y_temp2, test_size=1000, random_state=42)\n", "\n", "# Now you have:\n", "# X_train, y_train: Training data\n", "# X_test, y_test: Test data\n", "# X_calib, y_calib: Calibration data\n", "# X_new, y_new: Conformal prediction data" ] }, { "cell_type": "markdown", "id": "37ebd52b", "metadata": {}, "source": [ "### Modeling" ] }, { "cell_type": "markdown", "id": "14daaea5", "metadata": {}, "source": [ "#### Training" ] }, { "cell_type": "code", "execution_count": 105, "id": "444c32c2", "metadata": {}, "outputs": [], "source": [ "from sklearn.linear_model import LinearRegression\n", "\n", "model = LinearRegression().fit(X_train, y_train)" ] }, { "cell_type": "markdown", "id": "905a68ca", "metadata": {}, "source": [ "#### Testing" ] }, { "cell_type": "code", "execution_count": 106, "id": "65baed1a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "MAE: 0.60\n" ] } ], "source": [ "from sklearn.metrics import mean_absolute_error\n", "\n", "# Vorhersage für den Testdatensatz\n", "y_pred = model.predict(X_test)\n", "\n", "# Berechnung des MAE\n", "mae = mean_absolute_error(y_test, y_pred)\n", "\n", "print(f'MAE: {mae:.2f}')" ] }, { "cell_type": "markdown", "id": "85363782", "metadata": {}, "source": [ "### Bootstrapping" ] }, { "cell_type": "markdown", "id": "657463eb", "metadata": {}, "source": [ "#### Procedure" ] }, { "cell_type": "code", "execution_count": 107, "id": "b144547f", "metadata": {}, "outputs": [], "source": [ "from sklearn.utils import resample\n", "\n", "# Number of Iterations\n", "n_iterations = 100000\n", "\n", "# Error Rate\n", "alpha = 0.05\n", "\n", "# Bootstrapping\n", "all_preds = []\n", "\n", "for _ in range(n_iterations):\n", " # Resampling\n", " X_resampled, y_resampled = resample(X_train, y_train)\n", "\n", " # Retraining\n", " model = LinearRegression().fit(X_resampled, y_resampled)\n", "\n", " # Prediction\n", " y_pred = model.predict(X_new)\n", "\n", " all_preds.append(y_pred)\n", "\n", "all_preds = np.array(all_preds) # More conveniert\n", "\n", "# Prediction Interval\n", "lower = np.percentile(all_preds, 100 * alpha / 2, axis=0)\n", "upper = np.percentile(all_preds, 100 * (1 - alpha / 2), axis=0)" ] }, { "cell_type": "markdown", "id": "66626ad6", "metadata": {}, "source": [ "#### Coverage Probability" ] }, { "cell_type": "code", "execution_count": 108, "id": "b20aaf6f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coverage: 0.10\n", "Avg. interval width: 0.21\n" ] } ], "source": [ "# Number of matches\n", "matches = [(y_true >= lower[i]) & (y_true <= upper[i]) for i, y_true in enumerate(y_new)]\n", "\n", "# Coverage Probability\n", "coverage = np.mean(matches)\n", "\n", "# Average interval width\n", "avg_interval_width = np.mean(upper - lower)\n", "\n", "# Result\n", "print(f'Coverage: {coverage:.2f}')\n", "print(f'Avg. interval width: {avg_interval_width:.2f}')" ] }, { "cell_type": "markdown", "id": "1cc88cb8", "metadata": {}, "source": [ "#### Plot" ] }, { "cell_type": "code", "execution_count": 109, "id": "1b4afb73", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwAAAAHUCAYAAACNsU+eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADq6ElEQVR4nOydeZwT9f3/X8lmN9lkTxaWXeQUEFFR8ERZRUoLHlisWlurFY/a+m29a+sXqhSwVduiX9p61VZB690feFTr2YJKxfsWREQugV1g2TvJJtnM74+P751PZmcmM8nkYt/Px2MfsNkk85mZz3w+7/vtUhRFAcMwDMMwDMMw/QJ3rgfAMAzDMAzDMEz2YAWAYRiGYRiGYfoRrAAwDMMwDMMwTD+CFQCGYRiGYRiG6UewAsAwDMMwDMMw/QhWABiGYRiGYRimH8EKAMMwDMMwDMP0I1gBYBiGYRiGYZh+BCsADMMwDMMwDNOPYAWAYZh+w7Jly+ByuXp/PB4Phg4digsvvBDbt2/PyhhGjhyJCy64oPf3VatWweVyYdWqVba+5/XXX8eCBQvQ2trq6PgA4IILLsDIkSNN3zNr1iyUl5cjFoslvP7+++/D5XKhvr6+z2dee+01uFwu/OlPf7J8nEzS1dWFW265BZMmTUJZWRnKysowadIk/O53v0MoFMr48Tdv3gyXy4Vly5b1vkZzdPPmzb2vPfzww1iyZEnGx8MwTP+BFQCGYfodS5cuxZo1a/DSSy/hkksuwSOPPILjjz8eXV1dWR/L4YcfjjVr1uDwww+39bnXX38dCxcuzIgCYIVp06ahs7MT77zzTsLrq1atQiAQQGNjIz777LM+f6PPAsANN9yAJ554Iivj1dLU1ITJkydj0aJFmDlzJp544gk88cQTOOmkk7Bw4UJMmTIFe/bsyfq4Tj31VKxZsyZBgWIFgGEYp/HkegAMwzDZ5pBDDsGRRx4JQAijPT09uPHGG/Hkk0/i3HPP1f1MMBiE3+93fCwVFRWYPHmy49+baUiIX7VqVcL4V61ahdmzZ2PlypVYuXIlDjzwwIS/DRw4EIcccggAYPTo0dkdtMT555+Pzz77DCtXrkRDQ0Pv69/61rdw6qmnYtq0abj44ovx1FNPZXVcgwYNwqBBg7J6TIZh+h/sAWAYpt9DAuyWLVsAiNCUsrIyfPzxx5gxYwbKy8sxffp0AEAkEsFvfvMbHHjggfB6vRg0aBAuvPBC7N69O+E7o9EofvnLX6Kurg5+vx8NDQ146623+hzbKATozTffxGmnnYaamhr4fD6MHj0aV111FQBgwYIF+MUvfgEAGDVqVG9Ik/wdjz32GI499lgEAgGUlZVh5syZeP/99/scf9myZRg3bhy8Xi/Gjx+PBx54wNI1mzhxIqqrqxOOGY/H8dprr+HEE0/E1KlTsXLlyt6/RSIRrFmzBieeeCJcLlfvddaGALlcLlx22WX4+9//jvHjx8Pv9+Owww7DM88802cMGzZswA9+8APU1tb2jv+OO+5IOvZ33nkHL774Ii6++OIE4Z9oaGjARRddhKeffhoffvghAP1wHXnMCxYs6P39iy++wIUXXoixY8fC7/djv/32w2mnnYaPP/446di0IUAnnnginn32WWzZsiUhfE1RFIwdOxYzZ87s8x2dnZ2orKzEz372s6THYximf8IKAMMw/Z4vvvgCABIsr5FIBN/+9rfxjW98A0899RQWLlyIeDyO2bNn45ZbbsEPfvADPPvss7jlllvw0ksv4cQTT0yIG7/kkkuwePFinH/++Xjqqadw5pln4owzzkBLS0vS8bzwwgs4/vjjsXXrVtx222147rnncP3116OpqQkA8KMf/QiXX345AGDFihVYs2ZNQhjRTTfdhHPOOQcHHXQQHn/8cfz9739HR0cHjj/+eKxdu7b3OMuWLcOFF16I8ePHY/ny5bj++utx44034j//+U/SMbrdbpxwwglYvXp1bx7ABx98gJaWFkydOhVTp07FK6+80vv+N954A6FQqNdzYMazzz6L22+/HYsWLcLy5csxYMAAfOc738GXX37Z+561a9fiqKOOwieffIJbb70VzzzzDE499VRcccUVWLhwoen3v/TSSwCA008/3fA99LcXX3wx6Xi17NixAzU1Nbjlllvw/PPP44477oDH48ExxxyD9evX2/quO++8E1OmTEFdXV3vfV6zZg1cLhcuv/xyvPTSS9iwYUPCZx544AG0t7ezAsAwjDEKwzBMP2Hp0qUKAOWNN95QotGo0tHRoTzzzDPKoEGDlPLycqWxsVFRFEWZM2eOAkC57777Ej7/yCOPKACU5cuXJ7z+9ttvKwCUO++8U1EURVm3bp0CQLn66qsT3vfQQw8pAJQ5c+b0vrZy5UoFgLJy5cre10aPHq2MHj1aCYVChufyhz/8QQGgbNq0KeH1rVu3Kh6PR7n88ssTXu/o6FDq6uqUs88+W1EURenp6VGGDBmiHH744Uo8Hu993+bNm5Xi4mJlxIgRhscmlixZogBQXn/9dUVRFOXWW29V6uvrFUVRlLVr1yoAlE8++URRFEVZuHChAkBZu3Zt7+fnzJnT5zgAlMGDByvt7e29rzU2Niput1u5+eabe1+bOXOmMnToUKWtrS3h85dddpni8/mUvXv3Go770ksvVQAon332meF76B7+7Gc/UxRFUTZt2qQAUJYuXdrnvQCUX//614bfFYvFlEgkoowdOzZhTuh9J81R+b6eeuqpuvejvb1dKS8vV6688sqE1w866CBl2rRphuNhGIZhDwDDMP2OyZMno7i4GOXl5Zg1axbq6urw3HPPYfDgwQnvO/PMMxN+f+aZZ1BVVYXTTjsNsVis92fixImoq6vrDYeh0BdtPsHZZ58Nj8c89erzzz/Hxo0bcfHFF8Pn89k+txdeeAGxWAznn39+whh9Ph+mTp3aO8b169djx44d+MEPftAbkgMAI0aMwHHHHWfpWHIeAP07depUAMD48eNRW1vbey1WrVqFwYMHY/z48Za+t7y8vPf3wYMHo7a2tjdEKxwO49///je+853vwO/3J5znKaecgnA4jDfeeMPSORihKAoAJFwbq8RiMdx000046KCDUFJSAo/Hg5KSEmzYsAHr1q1La1wy5eXluPDCC7Fs2bLeBPb//Oc/WLt2LS677DLHjsMwzL4HKwAMw/Q7HnjgAbz99tt4//33sWPHDnz00UeYMmVKwnv8fj8qKioSXmtqakJraytKSkpQXFyc8NPY2NhbNaa5uRkAUFdXl/B5j8eDmpoa07FRLsHQoUNTOjcKEzrqqKP6jPGxxx5LOkaj1/SYMGECBg4ciJUrV/bG/5MCAAAnnHACVq1ahe7ubqxZs8ZS+A8A3Wvk9Xp7Q6yam5sRi8Xw5z//uc85nnLKKQBgWsFn+PDhAIBNmzYZvodi8IcNG2ZpzDLXXHMNbrjhBpx++un45z//iTfffBNvv/02DjvsMMfLi15++eXo6OjAQw89BAC4/fbbMXToUMyePdvR4zAMs2/BVYAYhul3jB8/vrcKkBF6lt+BAweipqYGzz//vO5nyGpNAmxjYyP222+/3r/HYrFewdsIykP46quvTN9nxMCBAwEA/+///T+MGDHC8H3yGLXovaaHy+XC1KlT8fzzz+Ott95Ca2trggIwdepULFiwAGvWrEE4HLasACSjuroaRUVF+OEPf2gY5z5q1CjDz8+YMQPz5s3Dk08+iZNOOkn3PU8++SQA4Bvf+AYA9Hpjuru7E96ndz8ffPBBnH/++bjpppsSXt+zZw+qqqoMx5UKY8aMwcknn4w77rgDJ598Mp5++mksXLgQRUVFjh6HYZh9C1YAGIZhLDJr1iw8+uij6OnpwTHHHGP4vhNPPBEA8NBDD+GII47off3xxx/v0zhLywEHHIDRo0fjvvvuwzXXXAOv16v7Pnpda1GeOXMmPB4PNm7c2CeESWbcuHGor6/HI488gmuuuaZX4dmyZQtef/11DBkyxHScxLRp07B8+XL84Q9/QG1tbUKIz9SpU9Hc3Iw///nPve91Ar/fj2nTpuH999/HoYceipKSElufP+KIIzBz5kzce++9+OEPf9jH+7N69Wrcd999mDJlSq+iOHjwYPh8Pnz00UcJ79UrE+pyufrct2effRbbt2/HmDFjbI0VSPR+6HHllVdixowZmDNnDoqKinDJJZfYPgbDMP0LVgAYhmEs8v3vfx8PPfQQTjnlFFx55ZU4+uijUVxcjK+++gorV67E7Nmz8Z3vfAfjx4/HeeedhyVLlqC4uBjf/OY38cknn2Dx4sV9wor0uOOOO3Daaadh8uTJuPrqqzF8+HBs3boVL7zwQm+ox4QJEwAAf/zjHzFnzhwUFxdj3LhxGDlyJBYtWoRf/epX+PLLL3HSSSehuroaTU1NeOuttxAIBLBw4UK43W7ceOON+NGPfoTvfOc7uOSSS9Da2ooFCxZYDgECVKH+iSeewFlnnZXwt0MOOQQ1NTV44oknsN9++2Hs2LGWvzcZf/zjH9HQ0IDjjz8e//M//4ORI0eio6MDX3zxBf75z38mrWR0//33Y/r06ZgxYwauuOKK3jKv//nPf/DHP/4RdXV1eOyxx3rf73K5cN555+G+++7D6NGjcdhhh+Gtt97Cww8/3Oe7Z82ahWXLluHAAw/EoYceinfffRd/+MMfUg7rmjBhAlasWIG77roLRxxxBNxud4IH61vf+hYOOuggrFy5Eueddx5qa2tTOg7DMP2IXGchMwzDZAuqsPL222+bvm/OnDlKIBDQ/Vs0GlUWL16sHHbYYYrP51PKysqUAw88UPnJT36ibNiwofd93d3dys9//nOltrZW8fl8yuTJk5U1a9YoI0aMSFoFSFEUZc2aNcrJJ5+sVFZWKl6vVxk9enSfqkJz585VhgwZorjd7j7f8eSTTyrTpk1TKioqFK/Xq4wYMUI566yzlJdffjnhO/72t78pY8eOVUpKSpQDDjhAue+++3Sr85hRV1enAFBuv/32Pn87/fTTFQDKueee2+dvRlWAqPKOjPa6KYqoonPRRRcp++23n1JcXKwMGjRIOe6445Tf/OY3lsbd2dmp/Pa3v1UOO+wwxe/3KwAUAMrs2bN1qwi1tbUpP/rRj5TBgwcrgUBAOe2005TNmzf3qQLU0tKiXHzxxUptba3i9/uVhoYG5bXXXlOmTp2qTJ06NWH8sFAFaO/evcpZZ52lVFVVKS6XS9HbuhcsWNBb4YphGCYZLkX5utQBwzAMw/Rj2tvbMXXqVDQ1NeG1117Laadiuxx55JFwuVx4++23cz0UhmEKAK4CxDAMwzAAKioq8Nxzz8Hn82H69OnYtm1brodkSnt7O15//XXMmzcP7777Ln71q1/lekgMwxQI7AFgGIZhmAJk1apVmDZtGmpqanDZZZdhwYIFuR4SwzAFAisADMMwDMMwDNOP4BAghmEYhmEYhulHsALAMAzDMAzDMP0IVgAYhmEYhmEYph/R7xqBxeNx7NixA+Xl5b2dLxmGYRiGYRim0FEUBR0dHRgyZAjcbmM7f79TAHbs2IFhw4blehgMwzAMwzAMkxG2bdtm2n283ykA5eXlAMSFqaioyPFoGIZhGIZhGMYZ2tvbMWzYsF5514h+pwBQ2E9FRQUrAAzDMAzDMMw+R7Iwd04CZhiGYRiGYZh+BCsADMMwDMMwDNOPYAWAYRiGYRiGYfoR/S4HgGEYhmEYBhAlE2OxGHp6enI9FIaxRFFRETweT9ql7FkBYBiGYRim3xGJRLBz504Eg8FcD4VhbOH3+1FfX4+SkpKUv4MVAIZhGIZh+hXxeBybNm1CUVERhgwZgpKSEm4OyuQ9iqIgEolg9+7d2LRpE8aOHWva7MsMVgAYhmEYhulXRCIRxONxDBs2DH6/P9fDYRjLlJaWori4GFu2bEEkEoHP50vpezgJmGEYhmGYfkmq1lOGySVOzFue+QzDMAzDMAzTj2AFgGEYhmEYhmH6ETlVAGKxGK6//nqMGjUKpaWl2H///bFo0SLE43HTz73yyis44ogj4PP5sP/+++Puu+/O0ogZhmEYhtmnCYWAtrbs/YRCuT5jJg9xuVx48sknM/b9OU0C/t3vfoe7774b999/Pw4++GC88847uPDCC1FZWYkrr7xS9zObNm3CKaecgksuuQQPPvgg/vvf/+KnP/0pBg0ahDPPPDPLZ8AwDMMwzD5DKAQ89RTQ0pK9Y1ZXA7NnA6Wllt5+wQUX4P777+/9fcCAATjqqKPw+9//Hoceeqhjw9q8eTNGjRqF999/HxMnTrT0mQULFuDJJ5/EBx984Ng47LJq1SpMmzYNLS0tqKqqsvSZCy64AK2trRkVuPONnCoAa9aswezZs3HqqacCAEaOHIlHHnkE77zzjuFn7r77bgwfPhxLliwBAIwfPx7vvPMOFi9ezAoAwzBMjonFYrjpppuwevVqNDQ0YN68efB4uOAc4ywZm2eRiBD+S0uBFKur2CIcFseLRCwrAABw0kknYenSpQCAxsZGXH/99Zg1axa2bt2aqZE6SjQaRXFxca6H4TiRSCSt2vzZJKchQA0NDfj3v/+Nzz//HADw4YcfYvXq1TjllFMMP7NmzRrMmDEj4bWZM2finXfeQTQa7fP+7u5utLe3J/wwDMMwmeGmm27CggUL8NJLL2HBggW46aabcj0kZh8k4/PM5wMCgcz/pKhkeL1e1NXVoa6uDhMnTsR1112Hbdu2Yffu3b3v+fjjj/GNb3wDpaWlqKmpwY9//GN0dnb2/j0ej2PRokUYOnQovF4vJk6ciOeff77376NGjQIATJo0CS6XCyeeeCIAYWE/+uijEQgEUFVVhSlTpmDLli1YtmwZFi5ciA8//BAulwsulwvLli0DIMJZ7r77bsyePRuBQAC/+c1v0NPTg4svvrg3DHzcuHH44x//mHCeF1xwAU4//XQsXLgQtbW1qKiowE9+8hNEIhHL12rZsmWoqqrCCy+8gPHjx6OsrAwnnXQSdu7cCUB4Le6//3489dRTveNetWoVAGD79u343ve+h+rqatTU1GD27NnYvHlzn/HdfPPNGDJkCA444ADMnTsXkydP7jOOQw89FL/+9a8BAG+//Ta+9a1vYeDAgaisrMTUqVPx3nvvWT4nJ8ipAnDdddfhnHPOwYEHHoji4mJMmjQJV111Fc455xzDzzQ2NmLw4MEJrw0ePBixWAx79uzp8/6bb74ZlZWVvT/Dhg1z/DwYhmEYwerVq6EoCgDRtGb16tU5HhGzL8LzTKWzsxMPPfQQxowZg5qaGgBAMBjESSedhOrqarz99tv4xz/+gZdffhmXXXZZ7+f++Mc/4tZbb8XixYvx0UcfYebMmfj2t7+NDRs2AADeeustAMDLL7+MnTt3YsWKFYjFYjj99NMxdepUfPTRR1izZg1+/OMfw+Vy4Xvf+x5+/vOf4+CDD8bOnTuxc+dOfO973+s93q9//WvMnj0bH3/8MS666CLE43EMHToUjz/+ONauXYv58+dj3rx5ePzxxxPO79///jfWrVuHlStX4pFHHsETTzyBhQsX2rpGwWAQixcvxt///ne8+uqr2Lp1K6699loAwLXXXouzzz67VynYuXMnjjvuOASDQUybNg1lZWV49dVXsXr16l7lQVZAaHwvvfQSnnnmGZx77rl48803sXHjxt73fPrpp/j4449x7rnnAgA6OjowZ84cvPbaa3jjjTcwduxYnHLKKejo6LB1XumQU7/sY489hgcffBAPP/wwDj74YHzwwQe46qqrMGTIEMyZM8fwc9pufbQI6HXxmzt3Lq655pre39vb21kJYBiGyRANDQ14+eWXoSgKXC4XGhoacj0kZh+kv8+zZ555BmVlZQCArq4u1NfX45lnnumtD//QQw8hFArhgQceQCAQAADcfvvtOO200/C73/0OgwcPxuLFi3Hdddfh+9//PgCRl7ly5UosWbIEd9xxBwYNGgQAqKmpQV1dHQBg7969aGtrw6xZszB69GgAIhSbKCsrg8fj6X2/zA9+8ANcdNFFCa/JgvyoUaPw+uuv4/HHH8fZZ5/d+3pJSQnuu+8++P1+HHzwwVi0aBF+8Ytf4MYbb7RcDz8ajeLuu+/uHfNll12GRYsW9Y65tLQU3d3dCeN+8MEH4Xa78be//a1Xvly6dCmqqqqwatWq3miUQCCAv/3tbwmhP4ceeigefvhh3HDDDb3346ijjsIBBxwAAPjGN76RML6//OUvqK6uxiuvvIJZs2ZZOqd0yakC8Itf/AL/+7//2zv5JkyYgC1btuDmm282VADq6urQ2NiY8NquXbvg8Xh6NV8Zr9cLr9fr/OAZhmGYPsybNw8AEmKzGcZp+vs8mzZtGu666y4AQii/8847cfLJJ+Ott97CiBEjsG7dOhx22GG9wj8ATJkyBfF4HOvXr0dpaSl27NiBKVOmJHzvlClT8OGHHxoed8CAAbjgggswc+ZMfOtb38I3v/lNnH322aivr0865iOPPLLPa3fffTf+9re/YcuWLQiFQohEIn0Sjg877LCEbs3HHnssOjs7sW3bNowYMSLpcQHA7/f3Cv8AUF9fj127dpl+5t1338UXX3yB8vLyhNfD4XCCdX/ChAl94v7PPfdc3HfffbjhhhugKAoeeeQRXHXVVb1/37VrF+bPn4///Oc/aGpqQk9PD4LBYFZzOHKqAASDwT7aW1FRkWkZ0GOPPRb//Oc/E1578cUXceSRR+6TCSUMwzCFhMfjwfz583M9DGYfp7/Ps0AggDFjxvT+fsQRR6CyshJ//etf8Zvf/KbXM6KH/LpeRIXR54ilS5fiiiuuwPPPP4/HHnsM119/PV566SXduHftmGUef/xxXH311bj11ltx7LHHory8HH/4wx/w5ptvmn6P0djN0MqHLperN3rEiHg8jiOOOAIPPfRQn7+RdwToe16A8Hb87//+L9577z2EQiFs27at19gNiNyB3bt3Y8mSJRgxYgS8Xi+OPfZYW7kN6ZJTBeC0007Db3/7WwwfPhwHH3ww3n//fdx2220JLqK5c+di+/bteOCBBwAAl156KW6//XZcc801uOSSS7BmzRrce++9eOSRR3J1GgzDMAzDMDnD5XLB7XYj9HVPgYMOOgj3338/urq6egXU//73v3C73TjggANQUVGBIUOGYPXq1TjhhBN6v+f111/H0UcfDQC9Vu2enp4+x5s0aRImTZqEuXPn4thjj8XDDz+MyZMno6SkRPf9erz22ms47rjj8NOf/rT3NdmyTnz44YcIhUIo/bpK0htvvIGysjIMHTrU0nGsoDfuww8/HI899lhv8rEdhg4dihNOOKE3FOub3/xmQv7qa6+9hjvvvLO36M22bdt081gzSU6TgP/85z/jrLPOwk9/+lOMHz8e1157LX7yk5/gxhtv7H3Pzp07E1wio0aNwr/+9S+sWrUKEydOxI033og//elPXAKUYRiGYRhnCIeBrq7M/4TDKQ2vu7sbjY2NaGxsxLp163D55Zejs7MTp512GgARguLz+TBnzhx88sknWLlyJS6//HL88Ic/7BVEf/GLX+B3v/sdHnvsMaxfvx7/+7//iw8++KC3D1NtbS1KS0vx/PPPo6mpCW1tbdi0aRPmzp2LNWvWYMuWLXjxxRfx+eef9+YBjBw5Eps2bcIHH3yAPXv2oLu72/AcxowZg3feeQcvvPACPv/8c9xwww14++23+7wvEong4osvxtq1a/Hcc8/h17/+NS677DLL8f9WGDlyJD766COsX78ee/bsQTQaxbnnnouBAwdi9uzZeO2117Bp0ya88soruPLKK/HVV18l/c5zzz0Xjz76KP7xj3/gvPPO63Puf//737Fu3Tq8+eabOPfcc3sVnGyRUw9AeXk5lixZ0lvTXw8qISWTi3JJDMMwDMPs45SUiMZcLS3Z69BbXS2Oa4Pnn3++N+6+vLwcBx54IP7xj3/0lur0+/144YUXcOWVV+Koo46C3+/HmWeeidtuu633O6644gq0t7fj5z//OXbt2oWDDjoITz/9NMaOHQtAhFn96U9/wqJFizB//nwcf/zxeOyxx/DZZ5/h/vvvR3NzM+rr63HZZZfhJz/5CQDgzDPPxIoVKzBt2jS0trZi6dKluOCCC3TP4dJLL8UHH3yA733ve3C5XDjnnHPw05/+FM8991zC+6ZPn46xY8fihBNOQHd3N77//e9jwYIFtq5XMi655BKsWrUKRx55JDo7O7Fy5UqceOKJePXVV3HdddfhjDPOQEdHB/bbbz9Mnz7dkkfgu9/9Li6//HIUFRXh9NNPT/jbfffdhx//+MeYNGkShg8fjptuuqm3KlG2cCnJgqD2Mdrb21FZWYm2tjbbLh2GYRiGYQqfcDiMTZs2YdSoUfBpa/GHQqIxV7YoKbHVBKw/0R879FrBbP5alXO5PSPDMAzDMAxRWsoCObPPk9McAIZhGIZhGIZhsgt7ABiGYRiGYZi8Qy8PlHEG9gAwDMMwDMMwTD+CFQCGYRiGYRiG6UewAsAwDMMwDMMw/QhWABiGYRiGYRimH8EKAMMwDMMwDMP0I1gBYBiGYRiGYZh+BCsADMMwDMMwTNY58cQTcdVVV+V6GP0SVgAYhmEYhmEKAJfLZfpzwQUXZGUcp512Gr75zW/q/m3NmjVwuVx47733sjIWJjW4ERjDMAzDMEwBsHPnzt7/P/bYY5g/fz7Wr1/f+1ppaWnC+6PRKIqLix0fx8UXX4wzzjgDW7ZswYgRIxL+dt9992HixIk4/PDDHT8u4xzsAWAYhmEYhikA6urqen8qKyvhcrl6fw+Hw6iqqsLjjz+OE088ET6fDw8++CAWLFiAiRMnJnzPkiVLMHLkyITXli5divHjx8Pn8+HAAw/EnXfeaTiOWbNmoba2tk+n3mAwiMceewwXX3wxmpubcc4552Do0KHw+/2YMGECHnnkEdPzc7lcePLJJxNeq6qqSjjO9u3b8b3vfQ/V1dWoqanB7NmzsXnz5t6/r1q1CkcffTQCgQCqqqowZcoUbNmyxfS4/RFWABiGYRiGYfYRrrvuOlxxxRVYt24dZs6caekzf/3rX/GrX/0Kv/3tb7Fu3TrcdNNNuOGGG3D//ffrvt/j8eD888/HsmXLoChK7+v/+Mc/EIlEcO655yIcDuOII47AM888g08++QQ//vGP8cMf/hBvvvlmyucWDAYxbdo0lJWV4dVXX8Xq1atRVlaGk046CZFIBLFYDKeffjqmTp2Kjz76CGvWrMGPf/xjuFyulI+5r8IhQAzDMAzDMCkSi8Vw0003YfXq1WhoaMC8efPg8eROvLrqqqtwxhln2PrMjTfeiFtvvbX3c6NGjcLatWvxl7/8BXPmzNH9zEUXXYQ//OEPWLVqFaZNmwZAhP+cccYZqK6uRnV1Na699tre919++eV4/vnn8Y9//APHHHNMSuf26KOPwu12429/+1uvUL906VJUVVVh1apVOPLII9HW1oZZs2Zh9OjRAIDx48endKx9HVYAGIZhGIZhUuSmm27CggULoCgKXn75ZQDA/PnzczaeI4880tb7d+/ejW3btuHiiy/GJZdc0vt6LBZDZWWl4ecOPPBAHHfccbjvvvswbdo0bNy4Ea+99hpefPFFAEBPTw9uueUWPPbYY9i+fTu6u7vR3d2NQCCQ2okBePfdd/HFF1+gvLw84fVwOIyNGzdixowZuOCCCzBz5kx861vfwje/+U2cffbZqK+vT/mY+yqsADAMwzAMw6TI6tWre8NgFEXB6tWrczoerYDtdrsTwnQAkRxMxONxACIMSGuZLyoqMj3WxRdfjMsuuwx33HEHli5dihEjRmD69OkAgFtvvRX/93//hyVLlmDChAkIBAK46qqrEIlEDL/P5XIlHesRRxyBhx56qM9nBw0aBEB4BK644go8//zzeOyxx3D99dfjpZdewuTJk03Ppb/BOQAMwzAMwzAp0tDQ0BuO4nK50NDQkOMRJTJo0CA0NjYmCNYffPBB7/8HDx6M/fbbD19++SXGjBmT8DNq1CjT7z777LNRVFSEhx9+GPfffz8uvPDC3mvx2muvYfbs2TjvvPNw2GGHYf/998eGDRuSjlWudLRhwwYEg8He3w8//HBs2LABtbW1fcYqeysmTZqEuXPn4vXXX8chhxyChx9+2NK16k+wB4BhGIZhGCZF5s2bBwAJOQD5xIknnojdu3fj97//Pc466yw8//zzeO6551BRUdH7ngULFuCKK65ARUUFTj75ZHR3d+Odd95BS0sLrrnmGsPvLisrw/e+9z3MmzcPbW1tCX0IxowZg+XLl+P1119HdXU1brvtNjQ2NprG5H/jG9/A7bffjsmTJyMej+O6665LKGN67rnn4g9/+ANmz56NRYsWYejQodi6dStWrFiBX/ziF4hGo7jnnnvw7W9/G0OGDMH69evx+eef4/zzz0/vIu6DsAeAYRiGYRgmRTweD+bPn48XX3wR8+fPz2kCsB7jx4/HnXfeiTvuuAOHHXYY3nrrrYTkXAD40Y9+hL/97W9YtmwZJkyYgKlTp2LZsmVJPQCACANqaWnBN7/5TQwfPrz39RtuuAGHH344Zs6ciRNPPBF1dXU4/fTTTb/r1ltvxbBhw3DCCSfgBz/4Aa699lr4/f7ev/v9frz66qsYPnw4zjjjDIwfPx4XXXQRQqEQKioq4Pf78dlnn+HMM8/EAQccgB//+Me47LLL8JOf/MTeResHuBRtsNU+Tnt7OyorK9HW1pag/TIMwzAM0z8Ih8PYtGkTRo0aBZ/Pl+vhMIwtzOavVTmXPQAMwzAMwzAM049gBYBhGIZhGIZh+hGsADAMwzAMwzBMP4IVAIZhGIZhGIbpR7ACwDAMwzBMv6Sf1UFh9hGcmLesADAMwzAM06+g2vJykymGKRRo3so9EuySX8VqGYZhGIZhMkxRURGqqqqwa9cuAKK+PHWwZZh8RVEUBINB7Nq1C1VVVSgqKkr5u1gBYBiGYRim31FXVwcAvUoAwxQKVVVVvfM3VVgBYBiGYRim3+FyuVBfX4/a2lpEo9FcD4dhLFFcXJyW5Z9gBYBhGIZhmH5LUVGRIwIVwxQSnATMMAzDMAzDMP2InCoAI0eOhMvl6vPzs5/9TPf9q1at0n3/Z599luWRMwzDMAzDMExhktMQoLfffhs9PT29v3/yySf41re+he9+97umn1u/fj0qKip6fx80aFDGxsgwDMMwDMMw+xI5VQC0gvstt9yC0aNHY+rUqaafq62tRVVVVQZHxjAMwzAMwzD7JnmTAxCJRPDggw/ioosuSlqLd9KkSaivr8f06dOxcuVK0/d2d3ejvb094YdhGIZhGIZh+it5owA8+eSTaG1txQUXXGD4nvr6etxzzz1Yvnw5VqxYgXHjxmH69Ol49dVXDT9z8803o7Kysvdn2LBhGRg9wzAMwzAMwxQGLkVRlFwPAgBmzpyJkpIS/POf/7T1udNOOw0ulwtPP/207t+7u7vR3d3d+3t7ezuGDRuGtra2hDwChmEYhmEYhilk2tvbUVlZmVTOzYs+AFu2bMHLL7+MFStW2P7s5MmT8eCDDxr+3ev1wuv1pjM8hmEYhmEYhtlnyIsQoKVLl6K2thannnqq7c++//77qK+vz8CoGIZhGIZhGGbfI+cegHg8jqVLl2LOnDnweBKHM3fuXGzfvh0PPPAAAGDJkiUYOXIkDj744N6k4eXLl2P58uW5GDrDMAzDMAzDFBw5VwBefvllbN26FRdddFGfv+3cuRNbt27t/T0SieDaa6/F9u3bUVpaioMPPhjPPvssTjnllGwOmWEYhmEYhmEKlrxJAs4WVpMjGIZhGIZhGKaQsCrn5kUOAMMwDMMwDMMw2YEVAIZhGIZhGIbpR7ACwDAMwzAMwzD9CFYAGIZhGIZhGKYfwQoAwzAMwzAMw/QjWAFgGIZhGIZhmH4EKwAMwzAMwzAM049gBYBhGIZhGIZh+hGsADAMwzAMwzBMP4IVAIZhGIZhGIbpR7ACwDAMwzAMwzD9CFYAGIZhGIZhGKYfwQoAwzAMwzAMw/QjWAFgGIZhGIZhmH4EKwAMwzAMwzAM049gBYBhGIZhGIZh+hGsADAMwzAMwzBMP4IVAIZhGIZhGIbpR7ACwDAMwzAMwzD9CFYAGIZhGIZhGKYfwQoAwzAMwzAMw/QjWAFgGIZhGIZhmH4EKwAMwzAMwzAM049gBYBhGIZhGIZh+hGsADAMwzAMwzBMP4IVAIZhGIZhGIbpR7ACwDAMwzAMwzD9CFYAGIZhGIZhGKYfwQoAwzAMwzAMw/QjWAFgGIZhGIZhmH4EKwAMwzAMwzAM049gBYBhGIZhGIZh+hGsADAMwzAMwzBMPyKnCsDIkSPhcrn6/PzsZz8z/Mwrr7yCI444Aj6fD/vvvz/uvvvuLI6YYRiGYRhmHyMeB7ZsyfUomCySUwXg7bffxs6dO3t/XnrpJQDAd7/7Xd33b9q0CaeccgqOP/54vP/++5g3bx6uuOIKLF++PJvDZhiGYRiG2XdoagLefRfo7Mz1SJgskVMFYNCgQairq+v9eeaZZzB69GhMnTpV9/133303hg8fjiVLlmD8+PH40Y9+hIsuugiLFy/O8shzTywWw6JFizBjxgwsWrQIsVjM0t+Y/CQb96y/zIt96Tz3pXPJZ/L1OufruPIZo2uWrT0zW/fM8THfcgtmzJ+PRb/9bdbnGc/zHKHkCd3d3UpNTY3y29/+1vA9xx9/vHLFFVckvLZixQrF4/EokUhE9zPhcFhpa2vr/dm2bZsCQGlra3N0/Nlm4cKFisvlUgAoLpdLWbhwoaW/MflJNu5Zf5kX+9J57kvnks/k63XO13HlM0bXLFt7ZrbuWSGOOV+Pv6/R1tZmSc7NmyTgJ598Eq2trbjgggsM39PY2IjBgwcnvDZ48GDEYjHs2bNH9zM333wzKisre3+GDRvm5LBzxurVq6EoCgBAURSsXr3a0t+Y/CQb96y/zIt96Tz3pXPJZ/L1OufruPIZo2uWrT0zW/esEMecr8fvr+SNAnDvvffi5JNPxpAhQ0zf53K5En6nSaN9nZg7dy7a2tp6f7Zt2+bMgHNMQ0ND7zm7XC40NDRY+huTn2TjnvWXebEvnee+dC75TL5e53wdVz5jdM2ytWdm654V4pjz9fj9FU+uBwAAW7Zswcsvv4wVK1aYvq+urg6NjY0Jr+3atQsejwc1NTW6n/F6vfB6vY6NNV+YN28eAKE5NzQ09P6e7G9MfpKNe9Zf5sW+dJ770rnkM/l6nfN1XPnMvHnzgHAYq59+Gg3TpvVes2ztmdm6Z46O+brrgPffx+pPPkHDySdnfZ7xPM8NLoVM6DlkwYIF+Mtf/oJt27bB4zHWSa677jr885//xNq1a3tf+5//+R988MEHWLNmjaVjtbe3o7KyEm1tbaioqEh77AzDMAzD5BG7dwOPPw5MmgQcd1yuR5P/tLcDjzwC7NoFnH46MGFCrkfEpIFVOTfnIUDxeBxLly7FnDlz+gj/c+fOxfnnn9/7+6WXXootW7bgmmuuwbp163Dffffh3nvvxbXXXpvtYTMMwzAMk49Eo+Jn+/Zcj6Qw6OoCwmGguFhcN6ZfkHMF4OWXX8bWrVtx0UUX9fnbzp07sXXr1t7fR40ahX/9619YtWoVJk6ciBtvvBF/+tOfcOaZZ2ZzyAzDMAzD5CvRKBCLAW1tQDCY69HkP11d4nqVlAhFgOkX5DwHYMaMGTCKQlq2bFmf16ZOnYr33nsvw6NiGIZhGKYgiUREZ9uuLqC1FfD7cz2i/KarS/zr8QChUG7HwmSNnHsAGIZhGIZhHCMaBYqKhFW7tTXXo8l/2trE9fJ42GNih2AQ2LAh16NIGVYAGIZhGIbZd6A4drcb2Ls3t2MpBPbuBbxeoQRwCJB1mpqATz8V3qYChBUAhmEYhmH2HUgB8PuBHTuA3Bc7zF/IS+LziSTgUIivl1ViMRFuFovleiQpwQoAwzAMwzD7DuGwsGYHApwInIxgEOjuFgqAxyOEWa4EZI2eHrXiVAHCCgDDMAzjLLEYsHZtwbrGmQInGFQVAEoEZvShEqAUAsQKgHViMaE8sQeAYRiGYSBiitevBzo7cz0Spj8SCglrtscjrLSZUgCam8U8L2Q6O4UAW1ysXq9IJNejKgxIWSpQhYkVAIZhGMZZolFhGSvQjZEpcCgECBCJwM3NmTlOUxPwxReZ+e5sIYdHeTwFLdBmHc4BYBiGYRgJVgCYXKEoYu55vm5zFAgAO3dmJrE1FlNr6Bcqra2qslRUxB4AO5CyVKDrHCsADMMwjLNEo8IKW6AbI1PAUBdgWQFoa8uMoE7zvEAtwADUEqCAUADicX5urRKJCIWpQO8/KwAMwzCMs0Qi7AFgcgMpAGTV9vszlwgciRR0CAhiMaEc+XyJr7MHwBrd3WoloAKEFQCGYRjGWTgEiMkVZJUlD4DHI6zamVAAwuGCFgATSoDKFOr5ZBv2ADAMwzCMBCsATK4gD8DOnapgVlSUmUTgQlcAOjtFxSQKASLYA2AN9gAwDMMwjEQoxPXEmdwQjQqhrKNDtfoHApnpCEw14At1nnd1iWtVXKz+7nKJ82KSwx4AhmEYhpEIhzmZkMkNVJWlvFwoooDIA2hvF0qBk4RCBS0AJiRGt7UBn30mzoc7JydHUcQ8i8cLVmFiBYBhGIZxllBIbJAkgDFMtiAPQFmZUEQBtSNwW5tzxyEBsJA9AG1tarJ0MCiuEz+31ujpET9FRawAMAzDMAwAIUC4XCxIMNmHqvJ4PGrID5W3dDIROBYTP4Xs6ZJLgIZCQEUFKwBWicXU8KkCvV6sADAMwzDOQS7x4mLVAssw2YI8AMXFQvCn8ByPB9i929njxOOF6wGgEqClpervVA2IPHiMMaT8lZQUbNI0KwAMwzCMc5AA5vUWrGWMKWBo/hUVCeGW5iB1BI7HnTsOWYELUQHo6hIKOnkAFEUtnUreDcYYCgFiDwDDMAzDQBWMfD5hGXNK4GKsEw4D//pXZrrf5jtkva6sFMm/sgLQ2elcIjAJ/7KXoZAgBcDnEx47r1etBhSLFaxVO2uQB8DrVb1BBQYrAAzDMIxzyB6AQrWOFjrBoPjpjwqAnPhbW6tWtKGOwE4lAsuhRoWYBEolQD0eoSSVloprBIjXWQEwR84BKFCPCSsADMMwjHNQGUavt3DjowudaFQIwv1RiAsGRQJ6aSkwcKAqnBcVCc+AU4nAJPSVlBRmCIisHIZComrSgAFqdSN+bs2RcwAoF6TAYAWAYRiGcQ72AOSeSKT/KgChkBD2S0pEVRuXS/2bxwPs2uXMcaJRISwXarK7XAI0FAIGDRJKU1ERP7dWkHMACtTQwQoAwzAM4xwU91/AG2PBE40Ky3d/UwDicXHORUVi/pWXi3/pOgQCQGOjM/HacnWhQlQAmpvVqj+xmLD+l5QAbrd6HRlj5PtfoM3gWAHINj09wL//DXz+OZfZyhUFmKzDMAUDCfy0MbICkH2iUWHV7W9CnByXX1wsPADaROCODtEV2IljAUJgLrQcgFhMXANSAAChLJWUqL/3t7ljFxL4C9hj4sn1APodsRiwZQvw6adCAz/iiMSHjsks8Tjw4ovApEnA4MG5Hg3D7HvQRljAG2PB019DgKgCFYUAlZaK2Pb2drUq0M6dIg+gpES8TgpBU5P4jpkz1dCYZMcChKIbiagVgQoBqgBUWan27CgvT/Rk8HNrjlYBKEAPACsAucLtBlavFkpAQwNQVZXrEfUPwmGx2FNlCIZhnEUrOLAgkX1IEO5v6xx5ADweIdS6XKISUGOj+LvbLTzvr7+uVkqi+elyqUJwIJD8WLGY+ExRUaLikQzyQLtzGIBBCsDgweL/fr8493hcnEMk0v+UR7v09Ih/FaVgu0GzApArKiqAujrgs8+ENaKhARg5Mtej2vcJhRIXfYZhnCUaTUy85Gct+3R3CwGlPyoA0aiqAABATY0qrAFi3+3oEEJvdbXqgQ8Ggb17rc9XCvuhMppU+SoZH30kBMbDD7d+Xk6jLQFaVqY2TaPGVqwAmBOLiXn00UdCYSxADwDnAOQSrxcYO1Zk4z/7LPDuuwU5iQqKcFhdrBmGcZ5QKNG6yc9a9iHBvz8qABSKQ4J9ebn4l3LuKiqAIUOE110Ov6WGXlYF3+5uIUAXFdmzALe1CUUjl2hLgA4aJJT24mJxTorS/+aOXagMKFCwHgBWAHKN2w0MHy40yJUrgY8/zvWI9m1CIfHDihbDZIZgUAhhH37IVYByRTgsBNP+JsRFImLOURIwIAR+ny95pR67SetUbpQUB6uf6+pyJgk5HeQSoJGI8JIAQiHyfB0YUoi9DbJJJCIUpZKSgs11YgUgX6ipEQ9erheGfR0OAWKYzELJp2QVK8QSiYVOKCQ8zP2toZPsASAFoLxcDW8xg5I5rXoAqNyoXcUhGAQ6O3NbjW7Pnr4VgABVAWAPQHIoBKykhDsBMw5QVFR45cQKjWCQE5wYJpOQoEUCBisA2UVRxD3w+eyFtOwLUDKunAPg9YpwH6sCbSoeAKtVYOjeRCK52+ujURG77vOJcZSUiBwAQEQk+HxinOEwlyo3g54r6gRcgM8ZKwD5BCsAmae9XV2EGYZxFtoIFUVVAPhZyy5kjezPCkBpaeLrtbXWFVEr14u8W3LVHyuKA3lkcukZCwbFsb1e8WxSBSDC71fHWoBW7axBshopmgVo6GAFIJ9gBSDztLaKZCe+zgzjPBSCAagVUQpwYyxo6B74fOL//U0BiMf7KgDV1dZDbqwI8qRkFRWpVnIrn6McBerTkAs6O8WxfT5VASChH1D/byccyink5OR8R/YAAAVp6Mi5ArB9+3acd955qKmpgd/vx8SJE/Huu+8avn/VqlVwuVx9fj777LMsjjpDFBXxZplJenrEAlNSwteZYTIBWQ1lDwCHEmQXsjD3Rw9AMCjmmlYBKC8Xhh+5HKgeVo1DpGQ1NwNr16qvJUNWAHIlMGpLgFIFIIJ6IGQ7gb+1FfjXv4DNm7N3zHSIRkXIFCVNF+BzltM+AC0tLZgyZQqmTZuG5557DrW1tdi4cSOqLDTFWr9+PSoqKnp/HzRoUAZHmiWomkAhdRQsJCj20u9nDwDDZAIScABVASBrKbnKmcxCXWmLi4UwXICCScqQUC1btAE1EThZky8SipNB+zR5HOi1ZNDz0dOTOyOUbGWPRtUKQITXa78kqhOEQsCOHcArr4j7V1ubvWPbRQ4BI1mtAD0AOVUAfve732HYsGFYunRp72sjLTbDqq2ttaQodHd3o1sS9trzucoOPXRWOwoy9iAFoLRUrVKSy26MDLOvQR4At1sVQElQYgUgO2i70vYnBYDKn8r1/QFVAQgGzRUAq6VT5VA3OxZgUgA8ntwpAKFQosVfjv8H1EpA2fYA0LVpbgZWrQJOOkmUcM1HenrEj9utPmfRqFjv5Gub5+RU+nn66adx5JFH4rvf/S5qa2sxadIk/PWvf7X02UmTJqG+vh7Tp0/HypUrDd938803o7Kysvdn2LBhTg3feWQFgHEeWQGwWrWBYRjrkGBUXKxujNwLILuQVbo/KgBUmUerAHg8wMCBya20Ho81BYCs+ICwmLtc1izAlCDv8YhY/FwQConjRyLiOdVTANzu7Fe2oWPtvz+wdSvw6qv5G6pLTcBkD0ABym45VQC+/PJL3HXXXRg7dixeeOEFXHrppbjiiivwwAMPGH6mvr4e99xzD5YvX44VK1Zg3LhxmD59Ol599VXd98+dOxdtbW29P9u2bcvU6aQPlRPjzTIzhEJqLDJfZ4ZxHhI+XS4hRLjd/KxlG9kS6XL1HwUgHle78+p5m6xUAiLLfLKcFdnLQnXzrSgA9BwUF4tSnLkgHFbPs7RUXwEgsu0BAMQ1HTUKWLcOeP315HkbuYAUQNkDUIDdgHMaAhSPx3HkkUfipptuAiCs+p9++inuuusunH/++bqfGTduHMaNG9f7+7HHHott27Zh8eLFOOGEE/q83+v1wkvVKPIdaileYFpkwRAKiev75ZeiFTxfZ4ZxFnkDdLkyH0rQ3i6+f8CAzHx/ISIL/G53/2noRLkPRgqAlXASmq/JclZoPrtcqgBoJa9MrhyTq3DkYFANdQoE+uZLlJSIv2e7X458rJISYNgw4L33xBiPPjq/QmtkDwCFgLEHwB719fU46KCDEl4bP348tm7daut7Jk+ejA0bNjg5tNxgp6EIY59gUK2PzVbJwiEWA958s7BKxPVX5PCT0tLMezW/+AJ4//3MfHehIl/r4uL+89zIVnltCBAgFAAKs9UjFhOVaKwkv1KlK0BVAKyEq3R3C0G2uFi8P9t7EDX4Ki7WrwAEiGtXXJz9LtJ0bYhAQHht3nxTeAPyCblYCymBBShT5FQBmDJlCtavX5/w2ueff44RI0bY+p73338f9fX1Tg4tN3AOQGZpaRH/cg5AYdHWBnz6KfD557keCZMMWQijZEtFydzG2N0N7N2bme/OJyisx+p7Casx7fsClH9i5AGQE4G1KAqwaZMQjq14rLTXGFALS5gh5yjkohcAnVtRkX4FIEBNAu7pyW61vK4u9VoS1dXinr32GrB9e/bGkgxKAi4qUqsmsQJgj6uvvhpvvPEGbrrpJnzxxRd4+OGHcc899+BnP/tZ73vmzp2bEA60ZMkSPPnkk9iwYQM+/fRTzJ07F8uXL8dll12Wi1NwFrc7s5tlf4dcrn4/JyYWEh0dQnn7+OOCLLXWr5CrnPj9apWtTD1roZAQHPZlZV5RgJdfFiUSrUAhHoBa1rI/9GEg5dNIAQgEgLIy/TWksVF4CMrL7XkA5BhwK0YlEnJLSnLTDVgOkwL6xv8DqgIAZHe9DQb7KgAAUFcn9oAtW7I3lmTIHoDSUlVhKrB1KKcKwFFHHYUnnngCjzzyCA455BDceOONWLJkCc4999ze9+zcuTMhJCgSieDaa6/FoYceiuOPPx6rV6/Gs88+izPOOCMXp5AZCmwSFQTUeMXlYg9AodHZKe7Xrl0if4PJX0jYLC4WAhd5NTOpAHR352+1ECeIxYQAZLVqDF2Lzz4T96K/eJWThQC53SKkROsB6OgQrx12mCrIWfEAaOvAW5nnJOQWF+fGAyA36tOrAASI1ymxOZveIyMFABDj3LrVejfnTEM5AG63CCl2uTgJOBVmzZqFWbNmGf592bJlCb//8pe/xC9/+csMjyrLhMPCjd3ZKTaz/rBYZxsqAQqoCkCBPaz9ltZWsSn5fMAnnwAHHJDdmvKKAqxfD4wezbXsk0EWQ49HKACZTgKm5zoUEtbdfZHubiEcWQ3HCIXE9aZrQs3A9vW5KzdAMzrXmprEuRiNAl99BRxzDDBhgvAyRqPJPQByOU8SWpPtKVQpqLhY9fbnSgGgcth6zwwJtVYrGzlBPK5WJ9KjokJ4gdvaRFhQrpH7AMhdpwtMduMuSLkiGhVux/XrgZ07gcpK4JBDOAQoU5Cg4HKJmD2yjDH5z549YkMaPFjEgWa7VXxHh8hB2LMnu8ctREigoRAgio3NVDWRcFhVAPZVurtVT4cV6FqUlqrrXH8oBSp7AIwUALkSkKKItWTMGFFlxuu1rrCSp0s+VjIFgLwGspCb7XlLSlI0Kp5Po6ZoVBkoW+FjcviW0Xi6ukSTsHxArgLk8xVsDkDOPQD9ErdbWDUHDgQOPVSUuxo8GFi7VvydBVPnoYoLHo9aaaDAHtZ+STQqnpXSUtU1/fHHollMtrpld3SIH54vySGBwe9X7xe97jQU2hKJ7NuJrpGIEP6thABRLXy6B/1NAejpEYK8UYf38nIRHkTJ4xUVQEODasUl73Cy6yUruhUV1kKtKD/G51Nfy7YCQNeou1vU2jcqrUkKgJWSqE5A10a2psu43WKsu3cLhS3XyH0AZAWgwGQ3VgCyTUmJcDcGAkB9feKDRcIpCxrOo7fQFtjD2i/p6BD3juq819eLWNCvvgJsVgtLmc5OMY5sVsQoROTOoT5f5hUAshqShXxfpbtbnKsVBYAEPEUR94BCSvuLAmAmRAJCWC8tFYJkdzcwc6bICyB8PmvXi5SsoiI1jj6ZBZiEXDJc5KIZGJ2XUQUggjwD5A3JlgLQ2SnCkvQUk7IysfYfc4yxgpctZA8AJQEXYGERDgHKNi4XMH48MHx434fK4xETal9OaMsV1ATM7RaLm8vFAl0h0Nkp7h018yPr2dq12atsQgmY/UGISgfaxBVFjf8nBSATa5pc9jFXXVWzAQnxVhUAEkLImg30j7lL4S1mCkBpqVACmpuBSZMAqalo79/teAC8XvHjciUP36Xng/b9XDQDk8enlwBMUGnLbCmPkYgY2+7dxmE+ch5ArqEcgOJicR/d7oJMAmYFIJ+g5CAWTJ2no0M8oCUlYuFjRasw6OhQLW1EXR2wcaPInckGzc3imewPQlQ6kAXW5VJDCEhhy5QCEIuJY+WDUJApyANgpUAECcGAas2mJOB9HZpjZgoAIMJtDzpIxP1rLcly7LsRsqBHoYkuV3LvvVwiFxB7UWdndivbkKDt8ZgrAFQKNFtWbbo29fUi10rvmvj94nrlQx4ANTyk65SLsqkOwApAPkETqcAmUUHQ2ir+lRUAvs75T3t7X3dwICCEoWx0h1QUsSFluylOIUIWebkMIwljsmDq5PFIAWhv33dr3VODKVICzKBrAqilHOk79nW6utQyz2ZMmgR885v67/P5hFJgllNC8d8UZlVcrF7nZDkAiqKuZ1QKNJvrCpUeLS21pgBkMoFfOy7yjgwaJEo+a5HzAHIN3TOqOEUGqgLbI1gByCcoBKi/tG7PFoqihgjICoDVutpM7ti1KzFpjhg8WHQGznRlnmBQ/Hi9/FwmQ68RE1lUM1Ehg5QKv18INQW2+Vqmq0vMP6sKACUnytbt/qAAUBnJZPHqFRWJ1YBkKG/FTAGgawyo8d/y34zQ3oNcNAMLh8XYAwH12dSjpCTzPTxk5ATpww4TBjs9gwHlAeRa2ad7SaFSmQx1zCCsAOQTpEk6YSnbvRv48MP0v2dfoLtb3TgDgcRyb0z+EouJmE89S11lpRCM1q/P7BgoCbmsbN+uNOMEcky+7AGgCilOCxLRqPhur3ffLgXa2SmENasKAOU6kaW5qKh/zN1w2LgJmFXI8h0OGwuZcjMt8gBQIygzRUs7/3PRDIyMGAMHmifSkgKQbQ+AzwcceKAIBWpq6vu+fMkDkBUAQDVSFZgRghWAfII8AJRgkg5btmQ3UTKfkZuAVVWJ6+x2q5n8TH5CCcB6HgBAbGLr1mV2M6DkX7+/fwhR6UDCp8ulCmGyIJEJBYCOsS9XAgoG1Xj+ZAKGLKz5/WKd6w9eZRJUrXgAzCAPgBxKpYX2DVJ05WpXZsJ8d7d4NnbtEsJtcbH4rnQUgHDYXkhMOCzGUFVl/r5s5wB0d6vevNJSEaalV3qZ+gHkuieLVgGgf6k6VIHACkA+QQpAPJ6edVpRgE2bxINSYC6pjEBNdNxuYUGgBbsA6/b2Kzo6xPwtKQE++6yvgDdggKjlTf0zMkFnp9gwySrICqMxcpIjCWHk1cyUBwBQBZV9UQGIx4UCQNfTigeAKC9X8wD2deVV9j6lowBYsXzLDcdIAaAYcLM5GAyK97W2JhotUt2j43FgzRpg9WrrnwmFxD5IAqsRsgKQDQ8AKajk7R07VlRK1BZ6yJc8AFLmaK7RuAtMpmAFIJ+QN8t0JlFbm8iU35fd4nYIhRLbdsuelgIr29WvoAoZ4bB4NrSJYS6XqAj03nsiLjQT7N2rJufnos5zNCqU+TVr8t+KK+cAkAdAVrYzoQC0t4t54XLtm2sdVW2xowBQInZZmfq5bHV0TYfWVmDVqtSUbK1Qnio0X82edUoCpi7AsgfA7P4Eg/qdblOdtxs2AB98IJ4BK9eMzsmKkkSKTbYUgGAwUTEpKQEmTkwM3yUCgdznAUQiYrxyRSeg4GQKVgDyCacE09271dCFfXFTtIt8DahsW4F27nOEYLAwLNlUASgcFk1r9Czw1dXiPv73v5kRkPfsUeN8s7UZUuWhd98FHnsMeOIJYeXbvj3zx04HPQWgpESNj3Z6Y6T50NIift8XrdxUArSoSMyLZAoAhVIUF6seACCxP0C+snu3CI1J5RmTq8ik6wFI9qxT7gnQtwqMmTVfqwAoihAiU1m3WlqAN95QFUQrsed6z6cRslKTjeeKvCPyvdt/f2DkSGDHjsT35joPgEK05eTf0lKxzhWYTMEKQD5B8ZrphgDt3Cm+q6dn39wU7UJNwKhrH13nAtPWHSEeB/7zn8xZzJ1kzx5hEQqHhTBTXa0KezLDhwPbtgFvv+2sVSgcFmFIcqfHTCoAPT3CqvevfwH/+Ie4T8Gg2AQ9nuz1PUgVqsqjDQFyu5M3SUqFUEitv15cnL5AsHevmEP5BNX+/+wzoRAnq1xGln6tB6AQugFTw71U5ons+XAiBCiZB4ASrfU8AHprEIVhyc9FNJpaM7BYTAj/u3eLtS8atXZv9ap0GeF2q7lXmTYiyl5eWTHxeIQXIB5PHAPlAeSqH4B8/+m+ZzLUMYOwApBvpBsCFIsJ4Y7KnLEHQAgG8bh4SClWr796AKiRSr6Hk/T0CAWgtFRsqkOGAGPGCCFNS1ERMGyYqHr1xRfOjYFyEEgBsLrRpsqXXwLPPSfOobJSrYZB1tytW/N7vlLlFL0QoExsjFT2kTyn1OsjVfbuFeFW+VTJgzwAPp+4tlYUAEBcE69XCEtUhSnfFQBquJeqAmDVum2GPF/NPACyois3gjLau+WkYgpTikRSUwA++QT49FNgxAi1lKiVOSsr6FauEZUJzbQRkbw3esrbyJFi3Ze9AJQHoNcrIBvoeQDk6I18XqM1pKQAbNq0yelxMERZWXqW6eZmsRFWVoqHhD0A6gLr9apWjfLygtPWHaG9XVjR831eUAI7lZEsLxcuYaNO2WVlYlN7/fX0BUGis1OMgcrGZrokXkeH+P799+/bpKeyUiiyegpQvkDCp9erlhiUw+0y4QGQhZmurvQ23+5ucc/zSTmmEA8SxpIpAMFgohJWKAqAogiLdqrGLzvWbTOsKKx6CccUu240z0nIpWOQAlBcLNYYq89GYyPw1luiAILPp47VagiQ1RwAQDWWZTp/RK94AOF2i74A2r49ucwDkHNAKPQrk+tcBklJARgzZgymTZuGBx98EGGuMuMspaXpaZG7d6ulE0tKnBOGCpV4PLEJGCkA6V7nQqWtTSykua6jnAyqv08x5GVlwhpeX29cAWLIEGEVevNNZ3pp0IYjdyLOpBDV1ma8Mft8YpPPdfULM0gBkPs2ZNoDUFSUWIIvHY9nJCLueT41CKQQILqm9LsR5IWhBkVlZeL1fFcAgkGheKUqQMlCuV6irVWok7CZsk9Kimyxpn3FigJAyhl5AKz2AujuFgaOri7RLRdQw+vseACsJkoHAuLfdIuSJCOZ92boUOEFkC3+5eW5ywOgECCtB8DtTj98O8ukpAB8+OGHmDRpEn7+85+jrq4OP/nJT/DWW285Pbb+SUlJepPoq68SM+nzXdDLNHIPgPJy1TLp9Ractu4IVB1KL5Y+n+joUBW00lIhyHg8Iiyms1Pf8uN2C7f4J5+I/gDp0trat1lOJoWo5mbz8nweT9+EuHyChG8SHAA1plpRnA1HJKGEQl2A9Ise5KMHgEJi6DqahXvIghp5DPx+8RwpSn4rAKTwp6ooyo2k0oV6Lhhdr+5utQ+AXhlIKwpAaamqAFjtBvz++8DGjWKN0xtTMux6SUiJzLSnnLxcRvkbLpfIdZBlokAgd3kA5AHQ5gCQoaiAZIqUFIBDDjkEt912G7Zv346lS5eisbERDQ0NOPjgg3Hbbbdhdz5bqfKddCzT4bAQECj+v6REWFYKaEI6DikALldi+3efr+C0dUdoahLnnm64RKYhrw15s8iSOXy4uI9GcbOlpeLvlCSXDlQBSCZT8eGxmBA+zQSYykqh4OdTjDohW0xJ+ASsN0myi1z20etVqwylowBQ2BnNvXwgHFar+lDiqNH9l+PM6R7IFtV8VwCiUSFUpeMBkOdeqiTzANA8li3p9NwaWcu1CkBNjVre1YoHYMsWURVs8GB9IdnKvTULtdEjW70ArIyrpkb8jeZ+LvsBUA6AVgGgwiv5vK9qSCsJ2OPx4Dvf+Q4ef/xx/O53v8PGjRtx7bXXYujQoTj//POxM9+rVuQjctk2u+zeLSz+lZXid6+XS4HKTcDougDpXedCJRQS86O6Ov87p+7erVYAqqxUN4bqamDUKPNOkIMHCwVhzZrUy51Go8IDIIezUEnSTBAMinti5gEgxSfXXTD1IAFM22RIFpKcnG8k7BYXC+GLSjOmcwzyLOVTngV5I0g4sqoA0LyV70W+KwBEqh6Anp7E5zVVSIkw8gRRmFVJieoh9PnUMpBGHgDKxfD5xJpGz4uimK8riiKE/1hMrH9arPbAoGfUaqlUuSRqpj0AyXo41NT0NfzkKg9ADgGiHIBc9opJg7QUgHfeeQc//elPUV9fj9tuuw3XXnstNm7ciP/85z/Yvn07Zs+e7dQ4+w9yNQG77NqluiYB8TDlu6CXaWixpthOQi6P119oaxOCZlVVfiuG8bhw7ZaWivs3cGDi38eMMa8r73IJJaCpKfVzlCsAER5P5pKnyfpspgCQAJiuAhCJON8HwiyOl6yjTipPcjxzVZUqBKQzp4NBcf337s2fplmUj2DFA0DXRF7raD65XPktmOzdq67JqYxTL/8kVXw+IZgbzVe6/lpPl8tlXO6WlK9YTHxO6+kzezY6OoRBRLsOyse2krdiN0yKPACZLn5gxQNQXCxyAWQFoLxczJtshznLScB6ZUALSKZISQG47bbbMGHCBBx33HHYsWMHHnjgAWzZsgW/+c1vMGrUKEyZMgV/+ctf8N577zk93n0fWkjsLoKKAmze3HdRisXyV9DLBvK5ywufxyOucz6GU2SKtjYxrwIBsejmayWgri4xNnLFV1Ul/n3oUKC21jz+005ynR6dnWLuyAJ5cXFmFQC546sRpaXp93B47TURS+wkchKmkQJgVCM91eOR0EChfUVFqYfv9PSI8ZWViXucL2smzTeyxibzANAckhuxkZUyX593RRHGKxLeUxGgqJGUmQJtFQpbM7petKbI+4n83FpRAOhcrSiue/aI9YjCIPXGa0UBoGo+VpUkUgAy3USOFAB5rupRX28tD4DK5TY2OlMMQoteEjApAPF4fnvaNKSULn/XXXfhoosuwoUXXoi6ujrd9wwfPhz33ntvWoPrl1A2uV3BhUIDaDMkV6TTyXeFRldX3x4AgLrI9zcFAFCTlfJ1XlBCIFW60G58JSXAuHHAK68AButPb2xtqudI4SC0qG/ZIv6fKSEqGEysNmREebnwbHR1JSbbWiUeN7cmpopZgqEs2FHYjhPHIytcZaXqjk/VGkhCSHm5mDNdXc7Ek6cDCft0jlYUAG2VFyphSxWO8hGqAFRaKsaYyppMJWGdmFsk+MreY0L2PGr3E/IAGOUAuFzib4FAYnfx4mLzXgBU/UZbkEA+NpV/NVtDSKawOq/pOoRCmVUAKM8lmWdi4EA1LJS8NC6XaJBYWipCNvfuFXmQbW3ibzNnih4xTiLnAGhDgICCkilSUgBeeuklDB8+HG7NhFQUBdu2bcPw4cNRUlKCOXPmODLIfgU1lLA7iXbvFoITCUQ7d4qHwefLX0EvG7S1qWXxtOEcmRTo8pHGxsRrkK/n3tkpFth4XGxCepavESNUgUHv7yS4p+oB6OhQN9NgUGzQFJJEXSCdpL3dmgJQUSEahu3Zk5oCEAqJa+a0lUp242s9ACRwUCiBUwoACU/l5eKYPT3q827lWmrHH40Kb1Nrq7hGpIDmChpTcbG47yQwmoUAEbIHgJThfH3eSeEfMEA8t6nsV1QSNp0mYAQZh+Q5RpCSpSh9PQBkzdcTlslDEYupexGF6BYXG3uuFEV4/Iys/4Cq4FG1KCPo/tv1AGQ6CZjGlUwxGTBAKMIdHeq1DwREA8h33lGFcr9fvN7UlJmcLaMQINoTCkjeSmkXGz16NPboxKHu3bsXo0aNSntQ/RpyJdldrBsbxQSkSUgWLJcrv6paZBuyBFCyIEHXOZ9K/mWSaFS4SmmRTSdcItPIFYCoBKiWQYOEZSdZFYhUF2NKQgbEs1hZmdmGSi0t1mJzqaRmqtUvKCneaWFQz/pMkGvfyQQ5Es58PjGn5V4AqVjgqL4+CXv5sC5QCdDiYvEMkJBpZMmPRlXlVPYA0DlluqFTqlAFIJondoU2uSSsUx4AauqkfdZl4U+e5yQAGuUmdXUl5uZRn55oVNyjjg79vBxq/qdtDEjs3CkMAla6AYdC9sKk5CTgbCgAyRQTvTyAwYOF0j58OHDAASI/bMgQteBHJqzxeknA8jNXQL2xUlIAFINFpLOzEz4n6vD2Z1KxTPf0iBAFWiTicSH00oOebzXfs5UkI5cFlLsAA+p1zufEOCehBGBSALze/G0S19wsFtNwODFeVsblEgs+JT7qYbU6hpaeHrHp0nG7ujKrAMTj4l5Y3Zj9fpHvk4owR9WGnBZwZWupVgjLRJdMOl5pqfpsU637VO657MFwucxDMrKFrJT4fKrHx0wB0ArCZMWluZuP653c1yOVkFWnugATZs3rjJLdaY4bjZ9ClADxOVICyAMQiegLqxT/r+fti0TEPKWu9mbrUjwuvt+o2ZYedB0ynQRM4Y9WPBP19YnrfVGR6h3TkqkcP1IC5dr/gHpd99UQoGuuuQYA4HK5MH/+fPgll01PTw/efPNNTJw40dEB9jtIMLWTvLJ3rxAgyGXd1SUsRmRNIeuC02ELdojHhbVi0yZg2zZg+nSRyJlJwmH1YSwvT3xYZaEk19cmG7S3q7GTgBCa2tvTP/cNG8R3DR/uzDjJuk2hayNHGodzDB8u3MItLfox7R5PaoJcV5c4NinUkUhiV0ynN8NQSFV29IjFhII/dKi41hUVQklqb08sbWsFUgAy5QHQEzAy0Q2YjkflFysrxTWhc9Mrl2iGXFXI681NgyEt5AHw+cSYyBNmpABQGIh8D0iwkpVXJ8JknIQU/pYWEe9ud06beZ9SwczyLR9LFjrlGHCtBVhRxJwk5ZK6m5eXi327okLcU23VMUBcD5dLf43evl2sCU1NyT0A8vy2qiS53ep4MhXWQmGasgXdjJoadW9IpjC43ZnJe6HcSu145W7dqYQh5gBbCsD7778PQHgAPv74Y5RIF6CkpASHHXYYrr32WmdH2N+QBVN6YJOxa1fiA9HRodZ6B1S3uBMl0uzS0SFiGD/7TCxYtKBmw8UudwHWbiqkaJH7ON82RafRJgCXlIjrEwqlFktOfPopsN9+zikAwaDqqWhvFwK+EX6/SAb+73/F+7SbZElJagoAxSTX1qqWSblsrNMKAAnlRkLrli3quQwaJATBxkZhHUxVAaBwEKc2Kbkxl54CQE1ynFIAKBeD1rSqKnXNTNUDQNeitFQIo7k2DJBAX1aWqACQZ8Cj2b4paVWuAgRkVnlNF7kCkFz5y+reB5h7n1JBDkXSzley/mq9DbRvA30VABqfy5X4fFRUqDkxehXLqPiAXggkJf2OGSMUKHqujUjVS0JGiUzlj9htTjZggLhuHR3WQoYyoQDQM6T12JJxjZqBOTEXM4wtBWDlypUAgAsvvBB//OMfUSF3VmWcgQRT6lJrZRHcsSNxsnV2AoceKiwDu3erG342FYBgEHj7bWEhbmkRC0ldnRjD559nx01G1Qu0XYCBRPdmf1AAdu9W50hPj1i82trSUwDCYeF90pbpTAcSvmtqxO9myW8AMGGCKGm5Y4ewhsmUlIhnwa4gR0nIVAnE5xPzloRYp4Wori7xPOjNQRKOBgxQ4/6p+kVjIzB6tL1jkUJEpf2cmvdkYZQ7/xLUMMmsd4NdQiHxnbTplpWpoY+pKADd3eLz1Augs1PcF6PY62wg5wBQyAiFLVI4hwwpAFovTCCQ2fyVdCCFv7RUTWwnT5FdBaC01PkQIKseAHnea/c2Wcj1eFTBsbxcfWZisb4KQGur+NFbX7dvB8aPF2GQ771nnhxO4zZK0jeDZIZ8UQA8HpH79cEHySMIMqUA0HXWKgD0ewEpACmZN5YuXcrCf6bQWqaTEQ6LkBqyBCqK+Bk0SH0tF02ftm0D3nxTPAQHHCAsxLICki0FQK8JGKCWW3XSKpmvxONCGSRB4OOPhaCdbigIVUtx0ptDCYFkLUumAFRUAEcfLZ4D7blQLwC7c02OSSZvhFwRJhMKANDXGh8Mimt87LEi9lU+j7Iy4Vmz29CrpUUVspw8D7kRk/Y8MhECRFVfaJOl59vlSm1ORyJi7q1bp8Zm5zoRWM4BoDwHqk6jN6dpvBT3TwQCagnKfFMAOjoSLf9er/01mZRPu8KtEWYKgFUPgJyfQ0IukDhG7Z6kVQCam/XL/ba1ic9OnCj+NZsT8hj0xp0MOnamElvlLsBWx1VXZy1EurhYrEtO9wKgOaEdL5UmLSCZwrIH4IwzzsCyZctQUVGBM844w/S9K1asSHtg/Ra5DKiVSbRnj7DqUQgGLRgDBqgl8SgGMZsEg+JhMArhyMZGZNQEDFBLeJG2vi/T0aEmslIoGClH6SiGra1q0y6noApAFA9rxQJ7wAHCVf7xx+L/JIBSfW273q89exIrANXVJXqQMqUAyPT0CAH/sMOAgw8GPvkkUdinmPeWFtVbkoyeHnE9MqEAmFXyyIQCEAolhnxQxbNUewFQSIWcTJzruvldXWIsdG5er1o5Rk/Y02tQBYjPUY36fFMAqCQtCcVFRWrok1WcTgImg5GeIEfHCgQSjyWH9shKAqAKudrwrGTdgJuaVG8foSjC83fUUcIoQLHoyZ5n2UtiR0micCj5GjuJXOrW6rgoD0AuaqFHcbGaB+hkTw8jD4Bd420eYPluVlZWwvX1RKy0G3fKWIeaS1AIUDJ271bdiIAQoCorhdtQ3oyz7QHo6DBeLMy6LDoJhX+UlOgLJk5XJslXqAJQXZ34f3W1KiSlMy/27lXzCJyKJ9+7V7XcyJVPzHC7xYa4fbvYNKkXRirdgBVFCNa0OYdCotQchbFkwora0tJ389u2TYQ0HXusmKfa60Ax07t3W1cAKE44EBD338nzMGsyRNbRTHsAyHqcigJAwr7fr+YD5NoDQMeXK3cZNQNTFPU17T2Q51a+KQCk8JMVmJ4xuwoAeQ+cymnx+cw9AHoWa1IeaU/RKgBAopIiW+/d7sT5Fo8LA4DWALJnj9jbDz1U/O5yCW+gWXlYeQx2lSTyJlHoYyYUAOqNYHVccj+AZAoAebqdVAAiEXG/slHtLMNYvptLly7V/T+TAchaZkUB2L490ZLQ1QUcdFBiBn8uNrOWFuOyhh5PdqxrFO9spAAEAqIyUYFo6ynT3q52taUKKa2tYo6k0wtg+3ZxXWnDTtf9ThWAqOHW0KHW44AHDBBKwIsvivOjDqh2k0LlrqQ0pqoqdYPq7nbeHU4N+4jmZjH2KVNUAcDvVy1xVH7O4xHWwAMPtHYc6gEwYIA4htMKgMtlrAB4PGopwnTRq/tOvQC6usSPXWul3IwoEhHXOtdlcmnNpjA4moNydTOCLLTkMZCR1+F8UwDkkr+lpaoAZWdNpnwWJ0uQ+/36+T5ytSutACjHgEej6hoSiag5GBUVqpJCvQDIAyIrri0tYv7Jyn1Pj7he3/hGYsEAut9me2qqlZKoIhJdY6chBUDrUTGjqEjkAbz3njDOGJGsc3YqKIqqsGnXF1kBKBCZIue1D7dv347zzjsPNTU18Pv9mDhxIt59913Tz7zyyis44ogj4PP5sP/+++Puu+/O0mizRCBgXYtsb1cfaEURmyzFK1NSlMuVmlUsVRQlcVxaqHV5psdA50wJdFpokS8QbT1lmptVQVoOh0mnF0AwKK5vVZW4fk4IFqGQKnyHw/qlPc0YP15UBdq6NfF1OwI7JSGTYkN1pkn4cjqcLhwWxyPhIRwWVr6jj06srBQIqLHpREWFOFer8zcYVBU1J8NBSFByu/WVfgojAJzxROpVHCJhClCLHlglHhfvJwWmuzv3pUApIdntVr0/Zh4AudKMngeAvMr5VKNcq/CT0p6qByCdamZa5B4gesfSE6Rpj9GOn56zWCzx3pDXiioByRXL9uxRcyOIxkYR9jN+fOJxk5WHpTGQ8cCOYiwbUjKhPJpVDzNj8GAxn416oSiKMKykkgNmhlyhSnsdKa/QyWIHGcbyTJg0aVJvCFAy3nvvPUvva2lpwZQpUzBt2jQ899xzqK2txcaNG1FlUlVk06ZNOOWUU3DJJZfgwQcfxH//+1/89Kc/xaBBg3DmmWdaOm7eQ/GHybTIaFQsnPTgUNgEWQ1IAYjHs6sAkKXRyCJDIUCZLLMnh35QHW0tPl9BaespQTGjskU7EFC7GFKeiF3XOcX/DxokrFXd3ckTdpNBCYFVVWJMdkMNPR4hOO/YITbQgQPt5zl0dqpCcnu7uG6yAgA4600LBsU8ralRy/4dfLCI/Zfx+1UFgK5zRYXwYDU3q2FPyY4l32unNnQzqyjgfJdMvZhvt1tcD9r05T4OVr+PxhmJiM+2t6tCU7aRQzZo7ZLr0+tVmjFKhJW9V9nOBTND9rZ1dAjhlkJs7AhQVBLWSQ8AJXRq5yvVeKeQQBlaY7XjlxUAeY2khmC0h8tVnxobxfosP6tdXcAJJ/RV8Kg6VHe3cflUbd8Mq2Qif0dGLmlr5zkbOFDtB6Dnddy2Tb2eTnps9boAE2RsLSAFwLL0dfrpp2P27NmWfqzyu9/9DsOGDcPSpUtx9NFHY+TIkZg+fTpGm5S2u/vuuzF8+HAsWbIE48ePx49+9CNcdNFFWLx4seXj5iOxWAyLFi3CjBkzsOiRRxD7egNIeH3RIsRkYZXqFMvx/xUVqntQFnzJ+peNc+nowKInn8SM3/8eix59FLGvs/BjPT1Y9OijmHHbbVi0YgVimdyMSAkBet2ufa4lWcWiUcPrbPf1VD8DQAjjjY0JL6V9/BtuQIwqv/T0iE1r8GB1Xnwd0pJ0bFpaW8ViaBQra5NYLIZFN9+MGbffLuZGPG6qUBiOt7YWOOIIoQDQs2EnzEm2ogWDiJWWYtH//R9mzJqFRc88I+ZyivNWd8wUl+/1ipKftbXAccfpu5fLyhIFP69X/L5nT/LjfH0+vTjgAeg9zimnYNFTTyFm1szH70csHseiBx6wPseM+FrYjblcWHTbber3fS3wx8JhLLrlFuvHIUGBhOdoVFxb8kglO3+7z7mV76L1mioAAao19ut474TP3HILYl/nRcTc7sTvksMVDOauk+di+RxbW3ut3LFgEIuefhozfvtbLHrpJcTsKO3kvXFSASDBV3u9zHJdvF79JFDKKenpSfwcNQOLRhErKsKiFSswY+ZMLFqwALHNmxMV2O3bRVPEsWP1j0tCupG1++sytzGv19b9jLndWPTSS5hx551YtHixpX3OFuGwqfHA8BjV1YiVl2PRww9jxvz5iXJGYyMWPf88ZixdKuaSBYNNLBbDohtuwIwjjsCi+fONz4UUVLcbMSBxbF8XIYhFo1j0pz858sxkHCWHjB8/XrnqqquUs846Sxk0aJAyceJE5Z577jH9zPHHH69cccUVCa+tWLFC8Xg8SiQS6fP+cDistLW19f5s27ZNAaC0tbU5ei7psnDhQsXlcikAFJfLpSycPl1R1q7t+/rCheqHdu9WlNtvV5THH1eUp59WlP/7P0VZuTLxix96SLx+992KkqVzXnjNNYoLUMf8gx8oytNPKwt/8AP1XABl4dy5mRvEjh2KsmSJovz+94qyapUYl/ZaXnqpovz2t4rywQeG19nu66l+RlEURXnvPUV57rmElxw5/kknKcry5WIu3H23ouzapSj33qsod92lKHfcoSjNzcnHpuWVVxTlttsU5amnFOXWWxVl82b798joPAFl4amnKsqePdberx1vd7c43//7P0W5805FefJJ6wP5z3/E555+WlH++Edl4fnnJ45r+nRFWbpUUWKx9M6RxvzZZ4qyeLH6/H49V3X597/FnH76afVnyRJFefnl5MdRFEV56SVF+eMfxeduvVVR3njD9jkYHgdQFs6YYTwPnntOWTh1auK6kGyOGfH1s73w299OPM+f/ERRFi9WFs6YYW8u0zp6883i2ixerCgrVoj78dVX1s7fznNu5bt++UtF+dOfxFi2bFHf+I9/KMr114v1VPuZmTMV5fe/VxZeeWXi6/Pni+f9llvEXpHhc7F8jldcoSh/+IM4F/meAcrC//kf61/8zDOKsnChonz4Ycpj68NnnynKTTcpygMPKEo8nnis66/vs04riiKOv3ix+PnyS/X1lSvFc7p4saJ88EHiZ1atUpT/+z9l4dlnJz4bp56qKI8+KubjU0+J67R+vf5YP/9c3Ns771SUvXv13/PSS4py/fXKwjlzbN3PhfPmGT6zjsyNr8elPPqo/vHN9rkLL+wrZ/z978rCk05KnEs//nHSYVg+l9ZWcZ1//3tl4dVXJ37muusU5fbblYXTpzv2zKRKW1ubJTk3pzkAX375Je666y6MHTsWL7zwAi699FJcccUVeOCBBww/09jYiMGaxI/BgwcjFothj8YSBgA333wzKisre3+GDRvm+Hk4werVq6F8Hc+mKApWb94MRKN9X1+9Wv2Q7DIEhGaqTYqhMAq7cbFpsPqNN0CReYqiYPXateL1tWvVcwGw+vXXMzeIUEh1639tSelzLT/4QLw3FjO8znZfT/UzvWNubk6Ia3Tk+Bs3qpV1/H4RbuL3q1bgUCj52GQURYSeUHlCB6zJCccHsHrTJlMPgOl4S0qEFwAQ46MkaCtQTDIgnr/16xPHtXlzyh4P3THL1qmeHvOmalVVfcPV/H5R+cjCnOlNzN+0SVyTND1wfe7Z5s3GbvzSUqzeujVxXTCbY2Z8Hc6w+osvEs/zo4/EuDZtsj6XATU+uqhItSJT3LOJ9TDl59zKd61Zo/YAkL0qUrx3n898+SVQVITV772X+Prrr6v5K1SxK4PnYvkc33xT/Zt8zwCsthhGDECck1MlQAnyAFB4mHwswLjcLSF727u6VA+M1kNWVibm8vr1ic/G55+r3gLKSTIqqW2WG6IZd8IebOF+rn7zTcNn1pG5oa10pT2+2T6nvWYffww0NmJ1c3PiXEqSU2rrXKQQoNXvvNN3PrvdWL15s2PPTKZJSQHo6enB4sWLcfTRR6Ourg4DBgxI+LFKPB7H4YcfjptuugmTJk3CT37yE1xyySW46667TD+nzUWgi62XozB37ly0tbX1/mzbts3y+LJJQ0ND7/hdLhcaRo4EYrG+rzc0qB+i+DlqW+719i0JWFmpxqRlSQFoOPRQ0J1wuVxoOOgg8fpBB6nnAqDhyCMzNwg57OPrxbrPtTzqKCEgdncbXme7r6f6GQAiBEhT4cOR4++/v/hDMChCTNxuESZG7sxgMPnYZLq6hAApC+hpKgAJxwfQcMghxlWk9M5RO16q3ENjs5IIFg6LEKDS0l4hqeHYYxOPM2JEygqA7pjb2sTzS0KZWdy63ibp9/dpxqZ7nGhUvIe63KYRyqR7HAANY8cahwCVlqJh+PDEdcFsjpnxdUWShgMPTDzPyZOBr+e75bkMJCZIVlaqlTySlFZM+Tm38l2HH943BAhQn7nubjQcd1zfuenxoGHy5MTXjz9eFVgN5q6T52L5HMeN6w25ahg9uu/zbwVSauw0krKCtvwlQf/XCzcyUgCCQWMFgPamgw9OfDbkMOhgUIRwGuVEySFARuvS19eo4fDDbd3PhuOPN3xmHZkbZgpVkmP0GVtdHTBxIhpOOSVxLo0bl3QYls9FKgPbcMwxiZ+ZMkU8f8OGOfbMZJqUirouXLgQf/vb33DNNdfghhtuwK9+9Sts3rwZTz75JObPn2/5e+rr63HQ18IhMX78eCxfvtzwM3V1dWjUxEnv2rULHo8HNTr1sL1eL7wmgkS+MG/ePABCE20YNw7zBg8GotHE1xsaen8HoJbeA4TAW1aWWB4MEK/F4+J9WVIA5n33u8CmTVjd1ISGgw4Sv9PrEFaIhtpazPvxjzM3iNZWdSP/erHucy2/9z3gqaeA7m7D62z39VQ/A0AIG5SoZzRm7Xc9/zwajjzS+Pg1NZg3ZYr4QySiVoiqqlI3i1Ao+di017arK7FKT5oKwLx584CNG7H6zTfRMGoU5l1ySfL3m42X8l8iETUhPFmMcGeneEZqa3vfP++664DqanGc/ffHvP32S1kB0B3zU0+pyb0+n7kCQB1d5US/0lLhtZAUMt3jUK5BaamaPJemAtB7nBdfRIPfj3mnnGKsAJSUYN4JJwAVFVjd2YmGE080n2NmfO0BmHf22cBhh6nn+aMfAcuXY963vgUMGIDVe/Ykn8uAakjx+US+ECVklpQIr0my87f7nFv5ru98B3j66cQkYCChHOy8q68WFsfVq9FwwAGYN2gQUFyMeb/4BVBWlnj8l19GbwnDSKSPcu3kuVg6xylTMG/0aDEPw2HMO+004PDDsfrf/0aDz9e7VySF4u3tNJKyAlVOomedcqioRKzesWQFgLwGsoLiculXDlIUcb579mB1WxsahgzBvJNOUt/T1QWMGmWs4FByuJz3JqMovX0z5l16KTBkiOX7Oe9XvwLWrsXqd95BwxFHWNrnLBOPGzevs3CMeYsWAV98IeSJYcPEuU2Zgnknniiei3/9Cw2lpZh38slJhzJv3jxgxw6sfvllNHzrW8bnQh4AjwfzrrkGKC9Xx3bttcCjj2Le8ccDo0Zh9Vdfpf3MZJqUFICHHnoIf/3rX3Hqqadi4cKFOOecczB69GgceuiheOONN3DFFVdY+p4pU6Zg/fr1Ca99/vnnGDFihOFnjj32WPzzn/9MeO3FF1/EkUceieJcVGtwCI/HoypPGzcC/+//AeFw4uta5Ie9o0PU/9drTkJKQpYUAE9XF+Z/+9uiVq/8elER5n//++KXzz93vkW3zK5d4lpI/RD6XMutW3sTvYyus93XU/1Mb7gBVTCx+l2TJomqN9u3A18/N71/6+4GHnpIrVahKGpHWyqZ53IBnZ3mY9PS2prY6fJrL0o6eDwezD/jDGDyZCGYJikBmnS8VGGDFIBQyDy8BlCbxni9opqM3w/PgAHqcT75BHjuuZQVgD5jjsXEMUkgT6YAUK37SES1mBUXqx1+hwzRPw6QqAD4/UKwTbOBW+9xvvc9YMUK9ZrrUVwMj9eL+TNnAt//vvXmZXp8XSDBU1aWeJ6dnYDXC09PD+affDJw3nnWzk2uuFNZqc4br7dPgrVMSs+51e/64AN9DwBZe6NRcZ70mfffF8qkxwOP39/3+OQ9Mqjm4uS5GJHwXcEg8PDDvSVAPYEA5i9aBJx9tjgPq4mTcllOp0OAtPXvJeFP91hUB17uZCyHEOlVaPq6Up8nHsf8GTNEic8vv0w05HV3iwpJRkhzQncdlqpmeUpLbd1Pj8eD+eefL6qS1dYmNDhLe25Q5SrqvGx0fKN9tqQE86+6Sii348aJ/gilpfAA4jNnngk88URi3xCz8/z+94WBbMYM4/dSGVCvFx6fL3FsX4cGedxuzD/7bEBW4vKUlEKAGhsbMWHCBABAWVkZ2r4uMTlr1iw8++yzlr/n6quvxhtvvIGbbroJX3zxBR5++GHcc889+NnPftb7nrlz5+L888/v/f3SSy/Fli1bcM0112DdunW47777cO+99+Laa69N5VTyE49H/CQTqqj6ASAeTL1FguK0i4rSa/pkFUURAqIVr0ummtKEw+JcqSqJweLSW7c3H0rjUUUnO6X64nFxrXfvBlatEv/KtLeLORIIqIItKQAkEJSU2O8FsGdPYgk0j8eZ0pgUy6so6ZcUpQob1FHbSim4zk5VIKaGafKG7fWK+eJUTWy5AlAoJO6NmZeCegFoz8XlSn4PqaoMlUuUrZvpYqXLKMVUO9F3g4Q+bUhUaWliLwCrSqlcQrO8PFHJ6urKTe18qo5ClWUIo3jvSEQtT6inhAUCmetknQpU8pe8XxR6RWuyVWOVXklYJyAPgDxf5Zr1ZgoAWdyBxC7Ael4K6l9Byl44nOitpNBAs5LIcrOuJApAStfI71c9DHKvgnRJtTuxzODBQvifNq3vNaLrYjUElNZQs5LpUhWgPkqC0+WOs0BKCsDQoUOxc+dOAMCYMWPw4osvAgDefvttW+E2Rx11FJ544gk88sgjOOSQQ3DjjTdiyZIlOPfcc3vfs3PnTmyVGvuMGjUK//rXv7Bq1SpMnDgRN954I/70pz/tOz0AADGxioqSC1WdneoELynRt6r5fOrDZeLOdgyKYU/mjnW5MveQUCgHPZBGQhUJJfmwIYbD6oJoVQH42n2OkSNF8vCqVYkxy5RT4PWK7/T7ExUA8pDY6RERjwuPg9x0x4nGbtSkKB4X9yxdBQDoE+aUlL17VWErHO6bUO/1Opb0DEA833R/KPTIDK9XCKXazczn61M+tg90f0jhIIuhE+dBArlWWJWhueZEPXGaJ1rFvqhIzBu6P3aeI1l4rqhQPQBJSoFmDHqOtc+BkQIQDovzNmr0ZCVOPJt0dKjXWG76R0K01b1B7kHhZAiQXP9eruNv1u9CvvZ6CoCRB4BCzoqLExOGAdUzaOa9pDAxaminhRRcu822CAo7i0ScNSI6oQCMHg3MmqXfB4XyOKz0AlAUcW5+v9obRw+zPgBAYnntAiClEKDvfOc7+Pe//41jjjkGV155Jc455xzce++92Lp1K66++mpb3zVr1izMmjXL8O/Lli3r89rUqVMtNxsrSGizTCa0ULfdjg5hudJLwKYFJhwW789k8y1AtWqSoKkHWVEyZXnv6BDnSxZVI6WUFK2ensxfl2SQB6CkxLrAQde6ulrEiH7xBfDqq8A3v6k2sgLU/I8BA1RliMJJYjHxN1Iik9HZqc43QCyUTtxL2gwoFtsJBeDrChsArAkUu3YlNkzT5tOQEEWhWukSDKrxy8kqAAHiPlZXC0VFhkJ6zJpWdXWpoVpyvXKnPAA9PcaeNkDdjJ1QACimWm++VlWJJkCaUDpTOjvFtSFBpKpKVEoi63Rnp3EFlkxBa4CRAkD5Qtr3l5bqhz3J1yofhBNZkIzH1f2C1mQp2dIUCtGRG/U5gZ4CYNYFmD5D46VrTOsazX+9Jm1yyFlzc+Le2dUljC1m+ymgesP0ktbpGqUqaHu9qkDstAeAqm+leu+kKn99IC+OWXUkggyX1GtFJ08GgLkHAFD310gkrfDKbJGSAnDLLbf0/v+ss87C0KFD8frrr2PMmDH49re/7djg+i0UAmQWI0+t4qmF+Nix+hOW2o2ThTkcNiy55QiUiGQkTIbDwLp14vzMWpenA20ukUhvXLQutGCT4OmkBcku5PInYc4KwaAquLtcQglYu1ZsGMcfL8pDyo3g5BbysgJAYUdWzp8SgMk6vnGjqoimo0TRRhmNis3OiTlKi7GV8DcKGystVTcl7aYrd2J1ygMAWKsARAwYIO6xTGmpCMtqbzeOrW9pSbQ0OqkAkKBtds9ky266CsDXCY26QkNVlZiH8riSEQyqccgUOkabvKLkxgNACpv2mpp5AADjeyDvDfngAWhuVtcb6k4OqHsfrQVWFIBMeABoPsgKa7JQGho7oM49WtfIO6P9nMsl1pkdO0QIy9atwNCh6t+DQfMEYEIqD9sHUtBJ2bALfaa42DQnxjY0LqcTuAm63mQoM4OMYOXl4v+hkL48RTkAFK6mhfYcOTk9j0lJAdAyefJkTJ482YmvYoBEy7SRFUQuXReNAvvtZ/xdgYBwa1EvgEwqAMGgahXW46uvxAK3fXvmNlaqABSNmgtV8nXOBwUAEGMgF2Qy60FXV+L7vF4xD959V9zzPXvUex2PJ1oxaV7IicfJLNCAuLZ0fxVFnaMkTKbajZM211hMCLFOeGOonCcpyWZ0dKhhOJQ3oVUASPjq6XEmoZ4sz2SVt6IA6HlGvk6kTKoAUOdg2RqfTQWArp0THgAjIUz2QthRAAB17mo9GdnInZIhpdzj6fs80RzUdn2l9UMOzZOhe+6EApYuiqL22yADhqwAUJ5NNJp8PZEt7MmUBbuUlibm+1D4BxkCtMgeADkEiNZJo+ejogKgzr+HHpr43eGweQIwQesC7b/y3kFrayCQmkBK+6LfL+6bU95yWTHJhKAsr3NWFYDaWrHHGe2HcgiQ3jWg+Up74r6oAJg16gKQkLTLpAAtJJTAqLewURMwWvjMqmpUVgoLgx23eKqYhYKQpZgWK7J6O71w79olHsSuLnOhiq6zXOnBLlTjOV3lgTYMijumspDJjq2lrEwI+m+8Ic6tulqttKAVaKurRUMvO3kHu3YlxrmWlqqhLOkoAKTQ9vQkrQBkGZ9PVfKSCXEUNub1ig2grKyvMEUhQIAz4WvNzer9Li21pgCQECFv8vSvkZJDij95iijhkryC6ULliM3uvex1SEcApbKKRs+cLGRZuUf07MuVSOQwMKoIlU2oLKm2AhCgCp9yjwISUvU8BoScA5DrECDKq6CEdp8vUQGwM09ozUh13TGDFAC6XsmSgOUkUAoVkZUHMwVAThQm6Bm3YpjR5njI80b2XKTjASgtVXuOWFmrkkFrfqqKSTJIAbCSBBwKqcoIhcXqQQqAUVgx5YmRAmsWFpkHpKQAXHnllQm/R6NRBINBlJSUwO/3swKQLrQI0oOrN9koTq2oyDj+n6ioUBvbZFoB6OzU14wVRSghRx2lhjbRYuXkQxKJCEGIKniYfTcl8pC2bhdFAVauFOEw6TY16+wUY/F6xbgp+cuM1lb9hbOmRsyPPXtECFQwKK6DVgGgJFmrPSLicZFsSps1xae2taVvTZYT1ZzYXAC1wgYlnJvlOZCC4HKJ8xo9uq8HRu4U60TSc2urWgJUzs8ww+9PjBkmPJ6+VaAIcoEHAuKzlZX6TY5SJRxOLlxQTDU1JdSjq0ucw8iRxt9DXiIjIezrsoqIxawlt5MQIgvP9B0UW07dubMVz0vGHW0PAECsrdp472SCKZCoOOS66hlVAKqqEmt1OgoA7YOZUgAA9XolSwKmz5DFX06yN1MAjMZOhgGzCkCEthSoNuQr2bjNkPMXqBKQUwpAOsnJyZCbuSXb3+S/m+2H5NExGq8cvp2KTJFlUvLjtLS0JPx0dnZi/fr1aGhowCOPPOL0GPsfcmiK0SIYDqvlDQcPNhd0/X41zjjTCgCFGmjZs0cIOYcdpnoArCTn2IVCOYzc+VqSXWczdu8GtmwRcfAUd5wqlKBN5QutbNJ79xpbIoYMAQ45RE0m9/v7LtpUIpbKXloZY0dHXwXAiXASKmPodjuTAAwkloVM5v1qaVE9UT09xh61QMAZIYoqOFmtACQfn0J5ZPx+4Z3Rq14hx8B6vaoHwIkQIPoOKwoAhY0Z3YcPPgBef938WZJjvvWEGcptAawpAGRtd7vVz1HeFBknKCY4W8jhnXrXVBvvLQt4RvfAae9VOmgrAFVXq0YjbVhmMoJB8V6j0Kd0oHK55J1NlgRMnwFUBaa7W7UIGykARntUV5f4jBUFwKwUqGxITEWJJUGaFBunQuLCYfO+CulCHpkkHb0B9H0mjJ4RurYm/U4cq3aWBRwrezJ27FjccsstfbwDTApQ3X4KAdKju1std2cU/0/QAkPWzUyhKGLT1T4cPT3CijZxoljsKTTDqTKEMhTKQdawZJahQEC1Ktpl61Zxvnv2pJ8c1dEhhNCdO61ZLCIRsaiZnR9tqqGQCKvRhlrRhuTxWBOWKDaSPkcJ5U7cS3LTlpY6pwDISW+UAG9EU5M4NnXNNqq6IZeZTMfCQ0K5z2etAhDh96vVabSvk3te71gkUFEvCLLGp6uAWw0vkMMj9Ob23r3Ap5+K58BsjUpm7ZaVvq6u5PeI7qOcoCmXZiQPTTYTgckDoBcCBKjPBykvVu6B/Ld8UACIcDhR2bbrAaA8mkx4ACi8VvYAUL6BUQw87bVkVKKKVfR9esh9OWSCQWHcM2lg1YucHK5dh7u7zRWQZMgVkQB7ZaPNoOuaKQUAMK+OJNPero6huNj4HOnamikAtLbuqx4AI4qKirBjxw4nv7L/Qm5sMwWASOaOKy1Vy1Y59fDqQU1MtJvWjh0i8fegg8TvRolsTiC7xaluuhl+f2oegEgE+OwzsXmFQsnrsCf7Loqjps0i2SYtN5FKRjisb2GmcBLAWjMwSgB2u1VBecAA5zwAsZizCgB5EyjsxEipCoXUGtAUk2xkdSsrE+ed7vlSgynadKy61N1uMTbtc0O5GHp5AHIPgIqKxHr96Qq2ySzy2jEC+orYJ58IJaC7O7kCkKwWO1mDrXjS9GqRFxeLuUAhY6RsZwsS7PVCgAC1LjtZe0kBMKumIoc4Ud+DXNHcrF5rRUmc+9ok4GRQyGmmqsh4PGrHbGqkZ7anaKvAyHX9jcYoe5xk9HqRGGHWDZjWvVRDbeXqZz6fcaihjKIAH31k/izT3+TqSU5DawE1eTRCbl5KeWB6yJ5UPezO3xyT0lV/+umnE35XFAU7d+7E7bffjilTpjgysH5PMsGUPAByXLIRZNHq6cmsAiCX0pLHGQ4Dhx+uLkAUlx2PO+8BaG0V3x2JiEUr2aLn9aYWr7d9uwi5GDlS3KONG4EJE1JzsVJlDhJCqPa4GXYUAEBfoKVwiXBYtZaaLcRNTerGTdb/2lpnlDkKY6isdNYaVFEhKk8Bxh4A6phcVaUqAkYCubaJVqpWNRJMKRTCTkxtdTXw5ZeJr1GFnfb2vqVv5R4A1dWqldVq6JcZdhIMZQFUZs8eURp4yBAhXCRTAKg6jNHxqqrE80nz2qyGOq2jQOL3lZeLsdDznE8eAK2wZyUECFC9V2Rdt9G00zEURaybFJYqlwAF7HkAKLTD6RKghGz5pmZSimIt2Z2MDlQkAjD3AFBDT22Sv1XPIAnpHR1912F6xlNdq+RqOn6/eF6T7RWtrcCHH4rPHnig/nuo/G4mqxJSmCuF1endg54e8XzT30pKxLzSK1BCOXNGz05xsSrb7KsKwOmnn57wu8vlwqBBg/CNb3wDt956qxPjYqgCgZFgShO0tNS6AhAKiYfOrGFQOugJpV99BYwZI5IqCbJAZiIHgMrLkbXTilUylYd140bxoBcXC6GqqUksetrmUVagBFWy4EUiyS3yXV3qpm8Gfa+eECQrAGQtNRKWYjFxjmSd7+oS/x80yBkPAG1STiUAExUV4t6axZ7LMclNTcDw4ebJlE6cLyl4dioAEZWV+hZcl0t/3lBeTigkrgeFTDilAFj1AMhNcuRSghT6QwqAmfIrx2EbHa+yUhV0kynSdA/pWSbkLtIul7MNkJIh5wDonaM23luO8TYThCl/hZTXXCgAXV1qcQZtCVBAzAmr5WLlZOlMVpGhsdBelazcLVmAKe/I7Tb3UlCzSvl8aV2wqgAk8wDIOS52oQpZe/eKZ6ulRTyvZnvdrl3C879tm74CIFdXykT4FuHziXOn66J3D8hwSfOQmnGGw31zS6JR8X1GlQvJm0GV8fKclEKA4vE44vE4mpqa0NLSgp6eHjQ2NuLhhx9GvZWatUxyrCgAgLGbWEbuhpvJUqDkWqaHo6NDjG/SpERBlUKAIhFnPQDRqBCAqC66lXKSlNxkRwFoaxOdQil2taxMnGuqYUDkAZBd+MkUADmsw2zswaDYsPQEewonoe8xmxft7WLOyS7VujpxrekapjOvtLXYnYI8QEVFxlZcbUyymdtdW24vVVpbVaWcOlZbxayaiHYOKorq3patbbQeUCJeqtjxAFCjLVm4271bWP/pmrvd5l5KOp5Z3XfZumxFAdDLKSBhGRDXtbnZ/HuchPp7BAL6HkV5/ZQVgGSCcGmpsw3gUoEqAPn9xjk/5K22qgCk00nWDJpjdL1ofUvmASBkIdDs+aDmc9rOzlY6AMtjJU+s7OmkdTndSjt+vxoCRCGTZpAH7quv9D2vNGfl8ruZgJRoMw81KQByCJCenESGQqMuwHS8dAqLZBnbCkBrayt+9rOfYeDAgairq8OAAQNQV1eHuXPnIpjr5KJ9CcpeN5pEFNNWUpJceJArq1itMJMK8vdS2c+DDkrsbAioQlRPj3lipl2oAhB1czUrjUrQgm1HW9+2TQhVZJ0hl+CWLXZHLJBLVNIiTVZ5Izo6xH3dvFmEgxjFNwaDYnMxWmSpc6pZ7WNATQCm76GmKbKVMp15JXdjdRJ6NkpKjK242phks6obcv5KOkKU3APAagUgIhDQTxqkLtLymhEOi2OQa1oudUnVKpzI3bCiAGg7bwMi9r+zU32WfD7zuvtW6r7Lye3JFGm5Eok8flnJojFlK26elBajXBhtTX85kdnsHjilvKZDe7s6Vsq30T7zXq94DpPtDXTume4kS2Fn3d3JBWmtAkDPYrLno7Iy8Z50dYl1wWpsvF55WCCxI206SlJ1tXr+imLuEYtERIGM+nrx/OnlDMhFFDIZAkR7qlkvAFIAPB4R3kTKtXY/TNYFGEhUAArAA2ArBGjv3r049thjsX37dpx77rkYP348FEXBunXr8Oc//xkvvfQSVq9ejQ8//BBvvvkmrrjiikyNe9+HJpjeJJKrxFjtoldZKQTXZIJeOnR0qBarlhZxzIkT+1qx5DE7mVzX2aluKoC10nCUtGM1FCkeF8m/WutcVZWwdnR22k9i1XoAKF47GDT27sgCZGWlWLgGDer7vlAIGDfOODeBmtAkCwehBGCy4LrdqtBGC3iqCoDc3MlpSx5ZnY0S4CkmWQ5JMLO60dylTSMVyNvi84lnxqqbn5BDt+S5Vloq5oHcEZjC8kpKxGfoXsnJiul2cLYaAkQWVQqP6OwUz5LsNfb5xFwzijEmwcFsvGTpLi5OXp1LTkSUxy97K+g+OdUAKRn0HBmtIxQzLocAWckBkENacqkAEOGw8CJqK+rI3ikzqBR2usKtETRfyUBD/S7MjkWKtqKoYZoU1mR2b8rLE/f67m5xbexAz7bs6bRSutQKskfMKNSQ2L1brLVDh4r73dQEDBuW+B47hoN0oIpN8bjxfKIk764uYcTz+fQ92tQEzMwDIPcByNUzZgNbHoBFixahpKQEGzduxF/+8hdcddVVuPrqq3HPPffgiy++QCQSwQ9/+EPMmDEDlVZq1zLGmFmm5bAPqxtSZaX6XZlSANra1MW7s1Ns7HpWeFqw6aFzio4O1fVfVGRNEKeYTasKQGOj8Gxow4sqKsT5pxIGFAqpGxnFaJuF5MTjatkyt1ssrs3NxsqimSeEkqRoHEbs3KkKXVQK1CkFwGoIQyrI4W+kaMkEg2pMslm4FKFNAk4Fii+lcdkVKgMB/VKgFPomKzqkAFBXW6c9AHTvSGA2Q3bHR6PAxx/3zTuh8zKaSyTQmCn3VFXF7dZPipSh9UcbRkLfQQnH2uuaKajHhFlxB20Vte5utTqN2T2g+UZlbHMBdWkHxLj11iarCkCmcwDkJGBSNpKFG8k5AHIZ2mShurIXhCqs2ZWh5PwsgrwX6V4j2Urv9wuh3ojdu9WE27IyES6r9VDrVd/KBLICYLQOyH0eAgH12dBTAKx4AEihzXXHbQvYUgCefPJJLF68GIN1YmTr6urw+9//HsuXL8c111yDOXPmODbIfglNML0QIBJktCXUzJAXmEwoAHKsMWC8uANicZObSTlFW5vaxc/ns6YAkMZu9Zps3qzfvbioSDz4VHHGDqS4eDyqYtHTYywEURMpQFzvQw8FRowQcZcyFLJgJtCSAlBUZOzWjUTEoi7H/5eXq3OPNodUa+NT0mMmOkJSV1c6jlaokMPGKFzKzCXtRAiQtjGXXQWguFjMbe0GQ8KfHJ8bDKqhhHLBABJu0u3fQCUrrbjxZff4tm3A55/3tXKSV8vIM0jCbrIQIFIAqBKQERR6prVEUpUhCjHp6RFNylpakp9nOph1ASbkrr6dndarvMhx4rlQAHp6hEeG1k6j/cuOAmClCV2qyAoA9dKw4gGg+SKHupnlrACJ85kqrKXiGSTjEckN6XYBlr+bnt3SUrHX6gm4iiIEfrrH5J3WPjdyF+BMKwByuJweVCVNVgD0eiaRB8BMAZBLmjoZ3pwhbCkAO3fuxMEHH2z490MOOQRutxu//vWv0x5Yv4fKoelNInrA7XRNlZMhM1HRgsp90kKsLe+mhf6WbkMlGQrloAY+VkKASCixYr0OhYTQYqTYVFWJxc/ug9/eripF8piNlBISICn3oLoaOOIIdaMiwmFxPZIpALTh6rl1FQV47z2xiJNFqqtLeHfI0kEbT6qCBW0GmXDly+Ui9eI6OzpUa1UoJJJRzayoJGyk0w24q0u1SNmtAERQTK7e+OSYW1IAurvF/KRzk+Px0xEGm5qSC+SELFBt2aImQGvfQ9ZTPawkNHq96njCYWNlgiqRuFx9BTS5GRgA7L+/iGt+6SVrPTNSRa4AZKQAaOO9rSSnAonCUKYVGT1kZZsswnprNFltrYQAZTIJmHKSZAXASg4ArYs9PWo1qmTKGYWt0dy3kwBM6Hkn5cZ56ShJ8vPg94v7qCdHdHSIfZiUl0BAnM+uXYnvk9ecTIYA0Zpj1lyTDJdUCYhK5GqfETkHwEiZo7UE2PcUgIEDB2Lz5s2Gf9+0aRNq7Sa0MfrQBm2kAJD7zGrsLi0wRUWZcWXrlQC1ogA41Q04FlMrAFFNdysJVKRoWXHXffWVCLUxUwBaWszdo1ricbWbZSCQ2LXZSHChJlJUk9rrBUaNAsaPF5ZVgkJazARMWQFob++b6LhhA/DWW0Iwpk22pycx34AEi1TvpVyJxenNoKgoca5pnyd5E+vpSV7G1eVSle5UFQD6XCoVgIjqav1r7feLzZYErPZ2cW+oBwBB95JqZKdCNKoqG1aUbTkHYOfOxNh/LUYKgJU4bEANeTSrBCQbH7T3wO0Wzw1dm6IiUc4400oAre1mCgCg5iBR3hO9ZgZ5r8rLgfXrk1dycRqqAET5Nl6v/phpn0rWoZ2qJWUyjISq8clll5N5AGjf6ekR/8Ziye8NGSqoEZ7VDsAyeg02nQqvpH2C9vhwWH/+7NolXqc1krxr8r4EJJYCzrQHgPIyjNaBtjbxPtkDUFLSV06iECCzHAAgMcQtz7GlAJx00kn41a9+hYjOhtHd3Y0bbrgBJ510kmOD69eQYKq3EcoTy2ptXxIUqaa10xUt5FJaJMyZWT38fjUG2YkHhaxLFK9rpQIQoF5nstaY8cUX6vuNvktR7IUByaVQy8rUkBW321jIkJtIkVXX7RbN1ioq1JKFwaC4DslKA1LVDa2FfNcuYPVqsRiSRUebAAykXxs/0/Gg5eXGvQD27FEt+opizaNGm3mqCkBbm5hDqVQAkseg56nw+8VGR+sGWbe05yZvYKkqAK2t4jhynoUZJBxR3LqRYmpmpKD4+GTzRPaQmIUTRaNqXwQt2sospARs2QK8/HJmDCnkAUgWMy5XdSOvSLJ7QM9pebkwVGza5Ny4rdDeruZnUbEGPcGY1r9kCgDdVyv5J6kiKwBW1igy3AHq2K0oAGRhJyNKKuuCbIihuS97V9Mxrni9qnedrrWeB2DHDrXvAUEFMmTji1H5Xaeha+Jy6SsstOdR6VmSX0jJkZ9/KyFAQKICkEymyDG2FICFCxdi/fr1GDt2LH7/+9/j6aefxtNPP41bbrkFY8eOxbp167BgwYIMDbWfYRYCRB0JjTYuPWiBAfRjodNFdpGSlcBKLLVTHgByhft84iG1Gj+pV5pQj+ZmEf+frLdARYXYWK3WAA6FEsO55PtkRQGQE8UGDRJVl3bvVkusJmslLyebycmXXV3Aq6+KMcidZbu6+sanpusBcCpRzYiKCnVc8ryPx9XGcXY68qarAOzdq3agthvnS1DYlVaRp1wGUvLlxHz5eZSrlaSjAJAgZ0W4IAVgyBDRQdsIn0+/eg+VhrQyT6hqiddrXAmIhBA5J0mmsrLvc1xUJJoabt6cGSVA7gKcrKkXNTiyU4aVBJyyMtGALZu1yilHC1Dnjd4eIRtlzMZHoZOZbCRFHlk5AdRs7skx4DS3rITIURM3Wp9SWRfkPVX2ADgRJkX7BK0VHk/f3hgU2qcNXaqo6FsO1Kj8rtPQ/aCYfq1AToZLeQwUxqMtxCF7AMzyOWi9LYBSoLYUgKFDh2LNmjU46KCDMHfuXJx++uk4/fTT8atf/QoHHXQQ/vvf/2L48OGZGmv/Qk6Y0yKXjbTqAZDjYpM1fUoFWRiyogDICWlWPADJNipKpKUH00pIAqBe52TdgLdtE0pGsrjM6moh4GljHo2gRDavV71HtBgZlZpsaRHjjsf7CqwTJojyazt2iN+tVJKork70APT0AGvWCEVm1KhE61pXl7gGsjVZW97RLpkMAQJUYVBb6lTuSkqhCVYUAAqno83VDj09QnBJtQIQEQioLnkZiqFvbxf3kmp3az1yJIyblcdLxt69iTkFyaBnjZ59I6jspvbakpJuZZ7I5U6NaviTtd1IiDTqSeHxCCVg0yahBOzd65ylz2oIkCzsWSkBSlBDp9paEYaVau+SVGhqUq8phaTpWe5JaKNqUXrQvuF2Z7aRlM+nGoishABRXhYg5hftR8nuDYWctbeLe5RKFUW5QzStw+QBoKT4dJC9atpQQ0Ao2q2tfcdOa5IcGisn32fSA0BjpSRfvS7JtP9SSC2gFgCQ5SQrfQCARKVxX1IAAGDUqFF47rnnsGfPHrzxxht44403sHv3bjz//PMYM2ZMJsbYP5GtIFolwE4TMMLlSiwx6WT1HUDNpAfE9wcCyRP1yDqSTAFoawOefdY8cY2sS1S1w2pytNXNZt06a0lZlEy0c6e141MJUHL50z2VewFo2btXve/aza+0VCQEh8Ni/lgZc3m5GgITDAIffAB8+CEwfHjfha6rS1hw5Y3biRAgJypVGCEv6rLFVk5KDIfNG6bJpFMJKN0KQIQck6vF5RLPivZYWgWgqCh5/wczduxQr5cdD0CyTZG6jWrXKDs9B6jMKSV36xk8IhFVMdQbv9lcICXgyy+B//f/gEcfBf7zH+Cjj4R3YO/e1DZ/2QOQTAHweOzXUy8rU7+/qEj0YchGmEIkouZoAeI8jbypVjwAcqWbTDeSkhUAK5Z0OQGd1k8r94ZKSZeVpaYAyEnAsgeAKveki9wLoLQ0sQIVICz8VIBDi7YcKMkL+aAAkAe+qEh4XmhdjEYTz89qCJBcCjbPuwHbzDJRqa6uxtFHH+3kWBgZeREkqxdBsY/Fxfbcn+TSVhTnE8BaWhJLgCZLpqTFKhhMLkS1torku7VrgSlT9N+zZ48a/6/XXt4I7XU2+u7duxNDYcwoKxOCweGHJ7e6UFlDiuElRW3PHlUBkN3BkYhYPGmR0dv8xowBDjxQCGhWFAD6DkURFsEvvhCNpPS+Ox7vu3GnW16QhJhkpfJShTa/4uLEed/RocbHhkJCoLOCtqOqVW8ToArlRUWpVwAC1PAJPUXe5xPWtiFDVCFXTwGgTSwVY0A4rCqi3d3WNnGyjibzONB3dnUlzn07CY1yLwAqK6q9T7IwYKQAkECldzyPBzjgAPHdnZ3imvf0qNVjamqAU0+1Nz/IA0AKjBGyB4AEEiv3gDwAgCjBunmz6F1ilpDtBO3tYu7T2mGWb0PNGZMpAGTsyWQIkKy09vRYW6NkJYfuvVUFQFGEdyaVdVAvCZiqgDmhAGh7AezdK+4rneOWLcZKq1wOdMAAVbDOdA4AjdVIAZB7AFCuG1n/qaQ4YTUJWK48tK95AJgsIYcAaScRxbIlc6VrKStTNygnY1cVRc2kB8TDlCyGkRYrsxbdRGenENbWrtX3AvT0iHhEshzqtZc3I5m1qblZdRNaobpaKAzaGEk9yAIhb2QVFULQ1itdJpcALSnRF9LdbuCoo0RVICvCByVku1xqLwHqJCtDwob23qbbYdTJTUoPOaxKbs4jxyTHYvrnrIcsfNm18ND97ulJvQIQIMZdVWVcCailRZwfhXb5/YlCSLoegJYWcS1JGbIauuXz6Yc1ytDzqE3elbuaWlEA5JwnvURg+drpfR99h9mcdrvFfayrEwrkAQeIfynxMVknYi00TisVfWTB1GqSp1yC0+8Xa8nnn9sbYyp0dKhx/2YlQAHVKGPmldV2T88UsneTukInQ/YAUI8Vq/fG70+et2WEXoNN2j+c8JLIvQBo/SODSleXUCSNPBdyOVAqvwuIa5VuaFIySJk28gAA6lwiBYDmnVYBIGOdmYImJ7HnuQeAFYB8hSaZVjCVSxmWldmrfiB3AbUao24FyimQO01aLUlnJQa5rU2MubVVuKy1UCk8qlJQU2NvUaFKD0baelOTscZPJTllqE6ylTAgirkvKUmMCychSSucycejygx6DBokvCVW5geFk5SWCovO0KH67+vqEnNOTwGge5mKMEmbVTYUADkBfvfuxDlr1WuUjsdDLgEql1JNBaNeAJTT0NSk9gDQeuTISkWhZsmEci2trYmuc6tCmGyBToZeCJDVZHG5kZdRCUArCgCF9NmBEvoVxX69fRpnsrkoK6F2QoC07xk4UCgAme5yTBVjqOu6WZ8WK15ZmrOZtiDLHoBYzJoCIHsAXC7rSorPJ57TVMJ/ANXzBKjziJQQJ7wk9DzIaw7d1127xP+NPM5yOVA5+T6T3huipEQteKBdLzs6xBwib1JlZWIDQPm5oHBsKqBgBM3feJw9AEyKkOVAuwiS5QOwHz5AD5vPp27gVujqAlatMk4c1ibSANa6UloNQaAGX4MGicoV2uo4ciw3KQB2CASMtfVYTFjy9Ba2nh4RmqStcQyIsVgps0eVLOSYX7kXgFagpmpLtBk5sYCSAlBWJqyXRspTV5dYILUbtyx8pBJOQvMqUwqA3A2YFOh4XLiwac6UlFh/ntLNAQCs9RxIBuVuaKGcho4O1cumVdrIwJBqA7fmZvWzdqywpGwnw+PpKzzLHgArSZVlZeK83G59AbezUy1ZqPd9lJSfaplir7dvd+5kUGy0VQMKCaZWFQCtF7O6WlznjRvtjdMuLS2q1TQcVtcbPax4AJKFbzmFXOAgHrfeXLKkRKylgYD1e1NaKu5HqpXBgL49SoJB5yrtkBdRNkBRZZ/GxsQiHEDfNYW8Yh0dqkyTyQRuQj537bNMZZKjUdVoQOtGSUliqdNoVMyBZJEAcvSGXcNKlmEFIJ+RW4oTFCMK2O8USIKQxyOELqt5ALt3iyTYL77Q/7vcBIxcackUAIqBBsyFxmhUTR4bMEBsJFovQEeH6pozai9vhtdrrK23tCQ2NpHZs0fEaypK3we9okJct2QCMd0DWYgiob64uK8QpC0B6kT9a7nGsxnBoHEeBN3vVBUAlytzyXxyeBV5qyiBjRrHJWuYJpOOAtDaqrrpU43/J+TcDRk5GZ82K63gQta3VBQARRH5JaQ420nksxICRO/buzfxNTlXxIqHj8oW+nz64XhWKpFoewHYoaxMeGGsKhB0H5L1AADUOQioyaZWPQBy+VgKJVu7NnONixQlsQJQOCzmrpHxwkoScDhsXRlMBwqrkRsvWvkMIIR5OxWaBg4UuVupegCARAWAqgE5lWir3Sf8frEHRqMil0Rez2Ix4JNPEp87SnL+6ivVA5AtBYDWSDnaQFGEgE8Wf5KnqGx0SYkqWwDqeSe7lhQCVAAUxij7KxSzLy+CVqtE6KFNjLOqALS1CWH2ww/1w3Xs9gAgyE1uFjZC9f2p2cugQWJhkb0AZEWPxxM7tVqFhBK9zaa5WQ0vkiH3/v77iwVD2xQlEBBjN+sYSg1m6P0kuJk1A6MmUlYSra2irfFsRDxu7F2h6xMK2asqQmEdme4IKXeGDYfVMplkLZe7MCfDbglbGVLofL70FYBAQA0D0eLxqDH6iqL/PKaqAHR1iXlICoDszUuGHUWhoyNxXOQBsKooVlSoCbVtbX2vE607mVQAOjuthwFZ7QEAqAUABgxQLbNWhA45d4AYNEgI6GYlQVtbU7dm0l5D9627W4zbyHhhJQmYQiczXUeePACUuG/lWPKzQCFrVr0zhx6anvAox7t3djpbXlm7T1Co4ZYtQlmXFZdQSOxPsoxBa+bOneLfTJdwJejZoF4ABDUkpJh/khvKy9VmYHLJdDrvZHKXWbPQPIMVgHxGLzadPABFRfbDP+Rug3YqAe3ZIx6OnTuBDRv6/l0ODTJr8KKFrJJySTctFN5DD92AAWKxkb0Ae/ao1UWM2subQRZZvTE0NekvyC0twnJ26KHAsGF9N3ny3pgpABTO5XIlCoOkqAF9qyRRtaV43L6iY4ZRPDlBFhEj9zTdb4pJtkqmuwAT1A0YUMNjSGmleHyr3hTauOwKztGo2IDi8fQqABEUuqWnlFMiMIW36D2Pcr1qO+dBHYBJAbCzDtlRALq7E2P3aW7ZaX5IVlttWdF4XPU8mQlIZWWpd02n/AGtJ8MI6ktg1bjj94v3lpdbV4pk5ZUgAfXTTxPPtadHCHcvvgisWGHsAU4GVQCSY+PNOrWTAEXKuh6dneq9y0YOQHe39TVKfg/N12xZhOVSoJ2dasy6U9dI3idIAdi0SfWiEsGgeK92XSkrE8o4VdPJdAUgQL2HbnfiekJeEuoCTPsprRvkGaA5aFUBoBCgAoAVgHyGuoVqcwCA1BJoKDSHEuPMhFMiHhfxfeXlwqKm5wWgxRgQi0NFhbUHgKzeZh1ktQ2+ZC8ALSR79qiuSTslQAlahLSCa0+PcFcahf8ccIAQiIcPV5UqmaKixO6HWqjVuNZr4fOpiUZyMxKzzq7pQt4YI0jgM1MAqPKBXaHYTgxzqpSVqW7nYDCxAlAkklreSDLvlRZqzBWPp1cBiKAwCj3FraJCFXCNPHJUkcVu9SayBpMl2c48tHqPvd6+QjvNFatWQznnKRxO3PzlJmBmgl26Fspka4CM1SZgBNX0j0atGz3k5GGZwYNFLtOOHeJarVsHPPGE+Pn0U+EJTbVpGDV1k8/JLHxVFgyNFICODnsJtqlCwqOdbrq0dlNYaSb7FGiRwxOd9gAAifsEJbq2t/e9LsGgWn5T9hxVVibm42Ty3snH0Ms3DIdVDwDQt7cOhX5pPQDJxix3g85zWAHIZ8h9rxcCZCVOVA+yhFqtBEQ1rgMBsUk0Nva1BFEiDY3PzLojo1e3WAuF98jU1Ki5AF1daohOKCQWKLvXRRa2ZVpbxWKl3aw6O8ViMW6c+L2uTnX3ywQCYkM1siCSB8DjSRQ0SkrUkCe5GRgJkDReJ92nfn9yBWDAAGOhVS6XZycshgSxTHsA6Hp6PEJ4kCsApRI2Ru+3k/NAuTI9PelXAALEBlxZqX+9/X5g0iQ1ac1IAaC5aUcB2LNHVcjtCjh0j5OFiZEFWOuyB6zPe+rYDIjz1CoApPAnUwDkmHm7lJUJI4KVz1OFL6treyCgGois3gO9ECBA9Wi9/z7w2GOi8WJTk6gINmaMWPu3bk2tfwwZcQBVIE3m/ZK7oWuheUH12DMpRNI6O3So9bLb2jrw2VQA5G7ApAA4ubZqnz1qOqjNW4hERE4Dlf8ktL9nwwNAe5PbLdZgehblMDJAfeYoNJIqB9EclKs6mcEeAMYRaGLKi7VcNjIVC2JVlWopb21NvvG3tanaPC3cH3yQaJlpbVUX4Z4ee8mURUXmHoDdu/uep8sllIBPPhGbK9X+D4ftW3IB1eWstTY1N6tx4jJNTaLCA9VrrqoS/9eGAZWVCQXGaNOUE9m0Gz71ApC7EZKyY2bVTRW/37xLazBo3iwo1W7Ame4CTMjdgPfuFfeWvGEURmEH8l7Z8QCQy9ntdi5/o7ravIxud7eYh3oWKfl6W71n8biaAAyo/QysIlfIsILWZW8nbIByaejcZMFDLkVIDfiMvkOuC24XWgOslNmktcyqB4DmdDxufS+gtUbvfOrqhFElEhFC//Dh6jgqK8U6b7XDuYysbNN6mux5o/frzW0yGgCJDe0yBSlHRh2jtWh7+NgNSU0HOQSIwhydXFvlXgCAuDZNTYkKAHXXHjJE7I3yM0zPG92zbCoAQGIvABLsKRxJ9hjKz7xceCNZF2CAcwAYh9BTADo7xQOWShIwoIYuUK36ZBadtja1wg7Q1wvQ3a3G3hN24lHJUqJnxYzF1FKNWgYOFH/74ovEcIRUBCtasLXWpt27VUsAQRvS+PHq6y6XSAbWft7vF4uHURKgvLlp7yVZduVuhCRA6nV2TReKJzez3pt5duR62XYVAKfd1HpQV1e6niSIWBVItJD3yk7Ss6wsOJW/MXiweb1ps2TxVBSAjg4h0MrjtyPgyNZRLU1NieUotVWwQiH7TccoDr+4ODEWXw4BMhOeSQFItUIOrQHJ8gC6u0UsNcX12ynpaVUwlcekN1/Ky0UVmrq6vgIMWdvthgHF42oZZ0CtAJRs/pMVVk8BoC7A2UoipUIBdnIAaC2ktTpbyB4A2i+c9JJo94naWuEdkYViyherrAT226+vl3TECKFcZqMLMJCYAyArAFQFjAoZyB4AMhxQ4jCV9LSqAHAIEJM2eqEpVG1GnrB2oAWTHuJkCkBzc2ICU1GRWLwpF0AuAUpVeOzEo5oJjXIFIC3kBdDG16YiWNEDKwvw8bhweWu/r6lJLF7aZln19WpSFOF2iw3AKNdC9gBohRCKtZQrF1DHXOq54GQTFSMFoKdHxAYHAubKFXlz7MaTZysJmKw6cl4FJYcGAvaVKXmjtdPYyuh+p8qoUcLS1tSk/3ezrtx0vakqmBVaWtSEThIu7DxzVFVFe822b1e9IzR/tOU77Qhh9HlK5CstFaFLpKxRKFay2u5WugGbQWtnMgWgqUmsE4FAYolPM2TPhZ1np7w8NYVmwAChAOg1VTOCyu3S8xUMWmvUKHuUtXNFLp6QjfAa6phsRwGQreTZiHMn5LBayu9xUtDWKsQlJX0NQ3S/KyqEoU6vTHE2KjjJx6NQPrmRanu7GAOVStV6AGifbW1VuwCTIpzseNm852nACkA+Q64ketio0yp12k2lBjw9CIBaB9cIRRHWfu0iO3iwcAVv3KgqALQo2LFMywlpehsSVQAyEpZqasSmThYtUk7sQiU3ZWsTue21tY27u4GDD+5rIRs4UIxHK+yXlBi7zTs7xT3V8+bIiUgUPkAbb3e3cz0A5HEGAon3oblZdAmtrASmTRPnaPb5VD0A2cgB0HYDpsRyuxWAiFR6AbS0qJuDU5ZLrxeYMEGt+KGH0fNIG5nHYz2UqbVVvXZU8cvOM6f1ACiKULTdbuD44xNjhH0+NeyNKsLYEWbkZmDydwHqPevpMVfGaE1JVQEAxPX/6ivz9+zYoV4Tux7UeNyewFFfn1qTIqrjbicMSG7SCIj1pbY2+efonug1A6M8uGzVkaeQKTtJwLKSm01hUPaqk2eQjDNOYKVnTCikFjmortb3oGXD6CNDz5Sco0a5i+SxkPvv+HxqhaC2NvE5UqasXMtsdDh2gJwqAAsWLIDL5Ur4qaurM3z/qlWr+rzf5XLhM21jqH0FbWy6HPtotwkYIbe3Lyoyr1EdDApBWK/za1mZyAWQK4KkogBQvKLeBqutAKTF7RaJuPvtpyYCp+MB6OlRrRXNzUJgkM9l1y7hHh85Un8so0f39agEAsK6pxdzq9cFmCBFraREvUeUa6HX2dUJqMRbKCQE/+5uYOpU4DvfEdfZTEimjccsn0OPbFUB8nrV76fQKjp+KnkjqSgApBw6qQAAYt7V1fVN6icPktHzSIpvUZF1BaCpKbFCi9WSv/Ix5fCIzZvFd8yYARxyiJjXsgIQDovf5Y63doQGauqjrQRE98xK/DzlTaVKICDWE6NrHIsJY0pFRWI98mTQHLRbCWf4cLUDsB1I+LETBtTenphoCVgLt5Ot6Nq1kxTCeDw7HgCqI2917lGYiJ28AaeQ9xK7VbOsYKVnTDCo5sdVV+sXyMiFAkBrDnn/urpUA6TW6yY3A6OQUcoVsBLewwqANQ4++GDs3Lmz9+fjjz9O+pn169cnfGbs2LFZGGkOoA2aNkTZ8pFqDLHs0k5WCaitra8QTFAuwKZN6muUXGx18tNDR54NLVTqzYyiIjWuO5UeAEBi63my2lBoEbmqqdzZhAnGoVf19apLkSgrUxsnaZG7AGu/Uy4FSrGc1AMgFktdATSjqkocY/t24KCDhOB/zDHWNlkKiTHK5zCCYugzHTfpcolr1tOTWJMcSK0ef7LwNS2RiBpzmmr4nhGlpWJeUllc+ZhGPQAAVciymswci4lnntaecFjMGTvWRbrP0Sjw5ZdCmJg5U1Wq6+vVcCQKSevqUoUZu+EM1AyMvkurAADJBTT6jlQpLxfHNQoD2rVLKAjV1eI4dhUAu8pzICBKGOt1R05GVZVQAKxWv5LL7ZKnz8rzRvNEXpMJeX3JhnBN19jq3KO8EjvNw5xEbrimKM57SZL1jInH1bCgkhLh8dFTALJ5bainEqDmLVKITzTad06SkkOyEnnrreQAAKwAWMXj8aCurq73Z5CF8ni1tbUJnykqkIxr29AiSB4ASn7Slo20AwnoJKx3dBhXESHXl96i5/GIjYTCGmh8VVXWwynkjUtPAJGrRySDjp3KXCBBiKruKIoa9040NwtL8f77G3/P4MFi4ZPDgCjOXGttkxuM6MX8kqJGpUCp+RIlx2XC9V1RIZIAZ80SQpkVVz1BHgC7tfHpvXRemYSsOmPGCIs5NV1KRQGQGypZUQAoVM7tFuNwujHQmDHifu3Zo76WzCMnV1CRy2IaQQYBei7CYfvlTEk42rFDhJTNnJmYTzNggOqFoxyazk5VAbBr7abytjS3SBDp6lLXimRCXbISuckgQdZIAdi5UxVGqHGZFUgJTUWQ2n9/1bpph6oqe2FAu3ap52Mn4Z7OS88DkG0FgNY2yl+xAu2x2Ypzl5EVdMD5vcKsZwzlAcr3eMgQ/dyybFRwIujZAlQvtyzgaw1qgYBaQjkSUSsq2fEAZHo/c4CcKwAbNmzAkCFDMGrUKHz/+9/Hl19+mfQzkyZNQn19PaZPn46VK1eavre7uxvt7e0JPwWDvAgC4oG20yhGD7dbbLxkBTWrBESdRI0YPFjEtso9AOxU4ZE9GVoLQU+PELqtLl6hkHmMuhlaD0BHh9is5UWsuVlYxc2sc8XFYmOVrf1URUirABh1ASaoggkgFqA9exJ7AGTC9X3AAcAZZwBjx9oXUEkISaU0JpAdVz61eA8E1KRvuzHshJy/YkcBoHE4TSAgQmj27lXrXJMCYPQMyR4AK+fR2poYz60oqXmiyAJ90klCEZOprOzbqIoUgFQSGmVh2uVS17pg0HopQrM1SG7UZ0ZJiX6idjwuwn/kOWh1bS8qUkud2hUy6+qE4mW1SZl8TJdL5G0kIxpNrOJGCfdWvLSyB0CrAHR2WlfenIAEVTtWXYqTz4UCQGsplYx2WgEw+z5aH+R1obq6by8Nux3E04XuQVGRUP6ppw51AdbOSRqbtqSqVQ8ARW/kOTkd4THHHIMHHngAL7zwAv7617+isbERxx13HJoNXJP19fW45557sHz5cqxYsQLjxo3D9OnT8eqrrxoe4+abb0ZlZWXvz7BhwzJ1Os5Dk4gStsill0oXYJlBg1ThIBw2VgB27jR/2D0eEX88ZIj4XVHsC1NkXevqSrQqmFUA0kNR+jYjsYqcAxCNqvH/tCh0dIjzGjMm+XfRtZBDMfx+YfGUMeoCTBQXi3MnrwQpAFRHORMeAKvWDSPkSh9WkT0AmUZ7zYJB6wKJFmrWZMcDQDkmqc7TZIwdK7xUtH5SV26jjUhWAKycByUAU4McILVrd8QRwCmn6CvslZViHlGICfVtkHNF7Ah91AyMkn3JQ0IKgJUYbfoO2UMSDIoQpq1bhWC/fr1Q8o0so2VlIrRO62VpbhZCuGw4sWPcoR4PdgVhyp8Khew3OauuFrkbyRQfSgCmdYGMNFYEI7o32kaYgNgbyBCSLQ+A3cpdlHOS6U7FetB8DYUyE2ZDvQD0PIZkWJSNHNXVfRuAOZ2bkAy6BiUl6rxUFHUuau+t9veODjUEyIoXqECageW0WOnJJ5/c+/8JEybg2GOPxejRo3H//ffjmmuu6fP+cePGYRx1XwVw7LHHYtu2bVi8eDFOOOEE3WPMnTs34bva29sLRwmQBVPKXo9GxQOYjsBE2jm5qPQUgHBYLUtnhvwQU38BO5DwSy3t6UGlh9QkKTzhuEDqDVdcLlXRIgVATj5ua1Or/CSjrk64yVtb1fdTEiAlTQKJHgAjpamyUrXQUXw3xTNns7ukVeSNnkqmmSGXDM3GZqB9ZsJhUZM6VVdtIGBPASAyda4VFcIL8OqrYr4m88iRZZOUzGTnIRsEKGQlFe8JJQjq4feLed/cLJ4jn08oANQwLhUPANX09vmEkE4JgC6Xte+TCyd0dYmwluJiYfw46CDxtw0bROL8+vVi3AMHJirTZWXiWW5pSQyb2rlTFZIpxMCOwFZWJtaGVBT3ESPUZGA7ifBVVUL52bnTPCRSW8Wtu9t6yFgyBYC6emcrB6C42N7+4vOpuU3ZVgAoNMxu2VyrUMloCkeWCYXEvNImfVdUiPlAikFPT24UAI9HnZcy2r2BPGuUyC2vP1Y9AAXQCyCvfBSBQAATJkzAhg0bLH9m8uTJpu/3er2oqKhI+CkY5BAgWQFIJwQIEA8jbYpGlYDMEoD1IOucXcGUrBVaAUROukkGxfKl01yJNuBYTMT/y+fR1SWSFK0Iin4/MGxYYh4AWT/k60yVLMy8ORSzLrtPM9EDwCnkUmtWOqdS3LnchTGT+HyJIXWRSGoVgIhAQBUmk0FCC40jU4wbJwS0vXvFtTXzNtBmRnW5zRSASEQIsHL8v8+XmS6n9fWJniGqRkYNe+y41mXhnayyra3q/LQiIFE+zsaN4j4edpgIlTv1VCEA77cfcOKJwNlnA9/4hjgOeQfIOEHhlnIegKKI7yRBKJXwzlQ9WIDq1bSbDGw1DKi9PdHKahTuqAc1btLmAMRi4jpaVd6cgHIA7Dy3ZAGWy25nCyoykCklyaw5XjjcN3fM7Raeca0HIJtGLLofbrcYN1Xgo5wFoyIcJCPZ6QMAqPM3z8mrEXZ3d2PdunWor6+3/Jn333/f1vsLCm0ilFw3Ph0horxc7QRsVAmorU0tj2UFuyVACbmairyg0ANqhXRKgBLU7r21VYQJ0HdRtQI7CbHDh6t1mAE10UhWCsy6ABPUtZmsOdQTIhNJpE5QWqp2W7RaGSeb5eD0Nq504vFpjmzfnjxJtKVFfZ4zafmqqhJWaepinex59PnEPI3Hze8ZJaHTOZPVOhPnUlOjXk9KpiTLvd3jaT0AJISTZc+KgOT1CqX+xBOBs84Cpk8XQr92faqqEuFN3/2uUA6KixOfebc7MUm7tVWED5GXJhXjTiBg3qE7GaNHi2MaFYIwgrwAZmFAcg4ZdWO2owDIxi9CroSXLes6CdR2jkUCZy48tVT3/5BDMrO2JusFoGdkra1NDItVlOz3R6CQ6mhUrI8lJWrUgV4IEO3b9K+dPgDsAUjOtddei1deeQWbNm3Cm2++ibPOOgvt7e2YM2cOABG+c/755/e+f8mSJXjyySexYcMGfPrpp5g7dy6WL1+Oyy67LFenkHnkRbCzU31w0vEA+P1i46B4PT2XmFH3WiNIAbBrjZI7qsoCiFwBKBYT1iajKiVOCCMUb9/UJK4zbVQdHWJBs1PtpK6ub+3joqLEhDu63nrWB3lMgPh7e7tayjATPQCcwG4zMFkByMZmQIs6hZtZLUlo9n0ejxB0zLwAiqImhuttNk5z4IGqkphMACHFF0iuANAzDgiBccCAzFg3KyvV5DvKUyIPgF2Byu0W95gEUCouQAqAFSuyyyX6FBx3nLVCAz6fuAe1tYnhlYGAKJpAyk1jo1gj5DBIu8/CAQeIUr2pUl8vfuwmA1OYo1k1oKamxLBAqxWAAOMqQLICkK34esr3sSNIkwCYjlEqVWgdJqOR09fIqBcAzV89BYAagtkpv+skdE0AMc5QSB2PnkGVFD5ag6h3gB0PQAHkAORUAfjqq69wzjnnYNy4cTjjjDNQUlKCN954AyNGjAAA7Ny5E1slN2MkEsG1116LQw89FMcffzxWr16NZ599FmeccUauTiHzUJY6KQCAWFTTsQC7XCIOl1p2B4N98wAaG1UBNBoVtZ/NOkeGw2Kxs2ttkBsqkUWhpyexegTFvxs1oOnuTl8YoYROStaU4//r6uwJHpWVwuUph/z4/WKzpM2fehzQ5qKH3AyMFICensz0AHACI2XOiGx7AGRrcDoVgAiyhHV1GZd4BNSyc053ATaipkaEAvn91jwAckiUEc3Nic9XuuFTZlRWqgYKuWt5qpVDKJSOaGmxFwKUKsOHJ1rWy8qE0Exr7ebNauUsQLU22jHupCvgFRUB48eLa20nGZiEoG3b+v4tFhM5EW1tfSsAWV1HZQFKNk5R8QQ7jbnShUKX7Fxnyt/LlQeAvDqUv+A0er0AyBCntz9VVfU1imWrCRigKgByxTMS8PUUALrnsgcgHrcu2HMScHIeffRR078vW7Ys4fdf/vKX+OUvf5nBEeUhFJseDqsLoRMCYE2N+F4KiejoUMNcIhGx4dPi1dqqxs4abfp2S4AStFh1dqqbdFeX2JDoPLu6hJVq715hqdJa40kBSIeSEiFkaCsPdXcL979dRo0SCYEEbf7kXZCbgBkJNWSxdrmEAkDJk/mYAAyo1TKSxZMT1Nk6W7G8breajEldRNOJYad4dFJYhw/Xf5/cA8DrdbYJmBEHH5xoXTZCbpBjds927OiruGTKuhkICCVg717xL+Uo0HjtIjfyovKv9HsmXfUDB6pjLypSu4Lv3Ste/+qrRG9eR4eo5JTtmPHhw1WLvp11tKpKNII85hixVkWj4vePPhKKQVGRulaHQmJNtNMjhgQoWdAkS6yiiOcoW6GQRx1lz1tInr5sJwADiQpApppt6fUCMKuq5vOJubB1qzrHsq0AFBWphgSq/d/ZKcarN5bKSmF0LClRjZBWryV7ABhHkBMNyWrlxMYrL2ZyfWxATHZ6mAHxkAwfbm7ljEZTC03RywHQVo+gai3HHCOsd3pxp+nWVichQK5UQHWC7TY7AsRnyHUIJCYCK4p5F2CCYtaLi8XmWVaWuSZgTmBXAZBLO2ZroyTXNTWxSkeAoFjb4uK+ZV5ltD0AsiG0DBok4tCtxLdTsr1R+daWFhG7LlfwSKcbuRXq6tTxeL1q465UhIbS0sScArLKx+OZfZZqatTqJ4AqgOzdKzys7e1qkraiiPHkIp+toiK1ZODqanEuW7YA69YBK1YAzzwjzm3YMLFm0VyPRu15jOQkSnm9p+co20mkgwbZ8z6RZzcXCgBZu0OhzHlJ9K59KCSMiEZK3pAh4tmjxNtsKgBkfCHFn/b2WMxYdqC+MWQktZO3wDkAjCNQ2Ac1w3HKrVhRoW6GHk/i4t/eLl4nwTQaVWOKzaq7pDIuuaGSrAD09KidZQGx2UyYIBKbtmxR3dVOCSOUINTern5Xe7ta0s8u1dWJLk/a/CmWWo5jTaYARCLCakIVgPLZA2A3B4DcqtnaDGhR7+5OvXEcQXPX5xOWXaNzpvCKZFV5nMaKtVVuhmWkAGzaJJ4F8sh1d2euAhBRU6M+416v2vwpVQVA/j8pAJluRhQIiDkmG1eoCzJZyEnIpYprqRgbnGD//dUKKVah9fnNN4FnnxV7yMiRwlijt6bZMdKQBdXlSgyjku9dvhpCAHVdyIUCQD0LaG/PxBj0emNEo+ZrqpzsnqsGaTReCv2JRIxlB1obqEohYE8BYA8AkzbFxWqjLCdKgBIVFeIhpkTgXbtUYZsSFqlBkNstks0GDtS3ElE5y1QEArJwK4oqgFB8PKAmHlZViQfq2GOFlYxiT7u7xfjTFUZow6FrDAihZ/jw1IQO8hzIyaHFxUJQlJuAmeVzUNgACZZktcjXjU9WAKwIEnIIULY2A9kanK7XiLxXXq/aPVoPmtdm1qZcQXPb49FXALq7gbVr1VAcQC0BmkkPQGWl+jz6fOI5SlVooOpU1AyMLMrZECKHD0+8roGAWGs3b070mFKvkVwl+A8Zkloy8H77iTkyerSw+uutlbRu2QlddbvVZl9UMhlQu9tm2wNgF9qnc6EAAGKehcOqV9Zp5F4AgHp/zO5xdbX4XHt7do0+hN+vGt5IZjFbk2XjAO3RVmUvDgFiHIEsdMGgGi7hhNWqpEQ8kBTzTu2xAeHCpYlOMeuDB4v41Pb2vt9FmfSpLMhypRKylssVgKgjL1lOKyqAKVPEw9vSonoqnPIAUGMbRRECg5VGZEYMGZLovg4ExLWVw7mSKS5ytQXyAOS7AkA5K8kgd3CmEtX0oGpPRUXOKAByaTm9fhqAUA5oA8m3e5dMAdi6VQissmUvHLafFGkXORHY5xNrQ6pCg1zSj6oKUWx+poXImhpV+QDEdevsFAK/7A2y02skE3g8Ihm4s9O82IOWQECskWbhDnYrABGU/xSLqWOieaAo+dkLhaBeLbl63svKVIU3E5ACQIYe8gqa3ePKSrF/t7VlL+9LhsKp/f7E+Wp0jWTDwdixQl6yOmaPR3jt81lJBSsA+Q9NOEpesduS3IzBg9XMfaoEFIsJAVwWyqmV9/DhYlHWxuCn2gOAoM9RqERzs3qOXV1C+JCFjVGjgCOPFIJJe7szwgjF7MkKV7ou+epqsYBQKAOFBDU1CYFRUZJvipWVqrKQzz0AgMRSa0bhJDL0nmxuBtQMLBWBRAspLuTF0OunAYiwL69X3O98VQDI2i6H+CmKSGTX3p9wOP3wqWQEAmKud3WJeVVVlboCIIfSkbJGXsdMW2hrahKT/ktKVIs2PStUktROr5FMMHq0UEI2brRXESgZwaC4BnbnPhmB5FKgHR3qPcuVdd0KJSWiX0SmnxMj/P7M5ouRgkMKAEUSmHkA3G7hMaLO1bnokByPizGMHp34uh5y2WgK4bUje51wQu7uv0XyVJJgepFboqdSJs6Mykp1E4xEhDDd3p6YABwKAUOHiv8PHiysPdowoHQVALLeB4NCQKbFBBCbpZ4VftIkUepwzx5n4mblutOAWKSqq1OrbERUV6thVoDa1bSpSfze05PcAyCHrKRaaSlbFBUlem6SQYqk3e6u6UCLeroVgAA17C0aFf9u395XcKK8D+q6m29WS7lDpjZ3o6lJ5NtoBdNUE/7t4HKpHYFdLuFNS1VRlD0AgBByhwwR/8+04llW1jcPYOhQdU0FxN8qK3MX/08EAqKTcV2dyPtI1tzOKpQcahd6VkgBUBSxP9A9y7YF2S6ZzJFJBvUoyaQFuqpKfaaCQfF7Mtlk0CDV2Jbt+6dVOCgZOVkVPnlNLIDEXjuwApDvkGAai6mt4p0SIioqVFc4VQJqa1Mr8CiK+KGyXZQLINfyBYRgWlmZuhAXCKiu3ubmvsfXE3pLSkRjntGjnRFGtApAZ6dIZktHMK2oUEuNAep3xWJqDGKyBVO24PT05F8MuRayPFn1AFjpVuskZA2m0Ix0KSsTwklZmXh2KH+GCIXE80H3Oh89AG63vgKwcaMYvza8LtMVgAg5EZiKAqQiNLjdqqIGiP9n04o8bFji86C1hre1CWUnH8IFamqE5bq62rjvil16elIr0yyHAFHtdjlHK589ALmGwhMzrQCQByActqbkUXGMbBp9CO18MeoBQMh9YwhWAJisQhY6KkPlVBIwIIRTv19s8sXFQvhubxfHcbvV2E158R46VDzAskUrXcs0JVNGo2IMPT1qHePSUuPKKTU1okOn7M5LFbJK9PSoChHV3U8VcnnK1nBKaLSaVCTHIQL5ISSYQVYvqtdtRDyu5glkUyj2+cSPU65ZUgAojE6bCEwlQKniUz56ALQNcgAxR9ev71u6kdzh2bBuUiIwGT/SSRaXhRWZbFghBw5MfIa1RCKp9RrJFHV1wLRpYq5u357ed5ERJxXDhc+nGqioShzNv2wWDihEKFIgk/Nb7gUQj1uTAUgByIUhhML+iGjUPKJCW4SDXtuHYAUg3yHLNAlLgYBzk7CsTHwfCfq7d4s4Zlo0KAFYtrAPGCA2qz171NfS7U4rdwOWw4soFMnMwl9X54xVXPYA0Hk74ZIfNCixVFogIJJFSehKJhCSG5KEyHxXAGh8yUqBUhdgK9fASSg5y6lynOXlqsIM9A2Pk3sAUNxsPiGXq5Pv2ebNQpnRWm6p6lY2PABVVapilY4HABDrk5zf0NOjVprJNAMHqsm/WtLpNZJJhg8HTjxRCHZGuS1WoPmSyhpN3ilSAOXqaawAmEPexkzOb1rryWBmRQYoLRVGhVwoANS3RW58mMwoU16euG6wB4DJKrRBywqAUxQViQ2eEl67ukSVGnqwOzrU2FvC5RJNY6iGO5GOYEqlQKNRcUw5jnzgwOxs0nSde3qES37QIGcUi+pq1bsBqB2Bk/UAIChkhZIh8y2ERIvPpx9OokVWALKt1DQ0qNWe0oXC6KizsNZiGgyqCfzl5bmr8mIEJb5Td9VIRPx/7Vr9ErUUnpcND0AgIK5ZV5daAS3VDVj73FB33mwIkXp5AERbW+q9RjLN2LEikbGz07wJpBmpVgAC1GZgipLoAXC5chNDXkjQXpHJ+U29ADo7xVph9R4PG5aewTBVyNsp9wJI1quhooJDgJgcovUAOP3gDB6shtqEQmrZTUBsknphMPvtJzYtao+drhAnNwOTOwCHQtnrjCl7AEIhEf/vBFVViQ3BqGQpxSFbVQDa2/O7CRhBylwyBUDuApztjbyqyrljUjx3OCzua3NzYsgXxX5HItltAmYVuXszIMa5fbv40Yvp7e5We3JkGkr+pRLIXm/qccNaBYDyqbI197R5AAT1GslXweLgg4XC3Nysr8AkIxQSz0gqni/5mkSjavUkChFlD4Ax5G3M5DWiUqCtraqyboXDDhNV/LKNXKYaUIs3mBEIJIYN5etzmiKsAOQ7sgIg18x3CrJgkgBOFXgo1lIvrq+8XFTSaG52pjutHAJEFiN66LLVGIeSNKl7olMueb9fuDxloXDkSFXwTaYAUAJjZ2d+JpFqsdoNmDwAuSgH5yRyQz1S9OR+AB0dahx7LqxeyXC7xfUnq1gkAnz+ufBo6M3NUCi71uqaGjUvJ53wKfJM0eZPOQXZUgAGDlTj2QlFEdc5W0aOVHC5RMW1I44QSqGdHgFA6hWAgL4KAIXS7QvrRqYhBSDTIUCkAAwYYN0okCvvjbw3AWKtS7Ymy5Wo3G5WAJgsI4cAlZQ4H0NcXp6Y6U5NkigO3qh6w/77q917vd70QgLkJGBSAOjfbFpNvV7h6na6JN9++/W1/lEFAiubGCUw5nMPAIKqO/T0JFcA0o3rzgc8HiHcBYOqdUkOl2hpUQXpfIv/J3w+tSTerl2i+o/R/FeU7CoyVF2suzs9IwN50igUL9tzr6Ym0RMIqN7WfIv/1+J2A0cdJbwYW7fa+2xPT+oFIpIpAPuYMOYoXi9wzDHpF7JIdgyfT9ybTB7HKSgEiNaAWCx5LpOciE7J5/sQeS5NML0egMrKzCQRkgUzFBIbEVn3OjvNk3WGDBF/37lTtQSkihw2Qq55SgDOpgJAjU2GDnWu0hIgNkCqhkFQ6UgrMeHkpcnnHgCEHFKSTAGg61HICgAgLJwUoldcLPJoACFUt7WpcylfvTc+n2oR7+gQYSl6zx3dr2zWN6dE4Pb29D0Ack3vbIeflZeL9VIOo2lrE69ly8uZDn4/cOyxYo60tlr7DCmVqSqMcg+caFTsSeRNy/dQyHygvj7zAmtVVfIGYPkChfzJRTmsFOHweIRcQL1c9iFYAch3aNJR9R8nBVNALKRlZULgrq5Wy/6FQsJybYTPJ5KBqQdAOsmNcigMfU9Xl9o0JFtQiA01CXIKaggmd1CORKzHTPr9znSuzQZyQrcVD8C+UM1DFpbLyoAdO9RwOto4qPtwPuLzqRbxPXvEpq73PFMjwmxUACLKyoRwEYulpwCQB0C2IqeTU5AKw4cnhgJ2dYlwwHxLDDdixAjg8MOFgisLUUaEw+Iap7puURIwfRc1AevpYQUgXyAFvRAUAECM1Y4CQOsGhWCzAsBkHYpNz0Qdcap3LwunVN0nWfOWESPS75ZLBAKipCfV9O/uzn5sLIUcOe2Sp0RgefOPxaxbUn0+8flC2PTkRKtkCgCFQRW6B6CiQnUtU7nHlhahAFDZwnwsAUqQB6CkRIQAGcX4U7GAbCoA1BE43ZhvbTOwdHMKUkHuBxCLif8XQuiEzKRJwKhR1pqEpVMBCFC93y6X2A9IAYhG81eZ7m+UlYk9sxCMU4DYQ3t6VO9UMoMqeQ5DIVYAmBzh82VOAQCE1V/WikMh8aAkUwDq6oSXwAmBIBBQN0UKNch21ZTiYnHO2uZH6eLxCK+CHP+rKNY3MdpEC2HTIwUgHjfvBkxlZPcFD4DcUI+e1b17xe+kBOVzCVfquj1oEDBunPEmRwJdts+jpkZc33QVxf/f3r3HV1HeeRz/nuQkJxfIhXAJgXBTIVwrQqtIEFcUBKz1VXWtQrG66qpYQEQpuFWMi7FWrFpUFpZqXS+xu0BXrVbQSmwqWBqggqBQRYg0WV6gJuGWkOTZP6ZzkiNJSMK5znzer9d5QWbmzDznPHNmnt88t6aTgUWiGYndD+DIEaspUFpadA7/2ZqkJKspkM938pwX33TsmPWdd/T33TQAOHzY2l9iIjUA0cQe4jZW8sMe4ORUswDb7H6Xx4/TBwAR4vM1XvyC3QRIaoze7YK3fXM6VQHc65XGjQvOTLydOjUGIXZBKtxtYzMzpby80PzIu3cPnFBEanswZwcAsXCRtQMAqfUAwB4fP9Y7AUuBzegkK4g9eLDxM55qxslIs/MrPr71c7KmxirEhrvJSnq6dT063fPEbkokWf+GO5Cx+wFUVVnt6Hv2jI3f9Df16mWNCnTw4MnXtKZOZwQgqTEAkKzfkl1ok2L/oYFT9OsnXXRR7DRjs2sA7GtyW+7BnTtb5zJ9ABARPp910tqj5QRbWlpjlCtZT6h69Wpb+9gePYLTKdAeicQ+frg7AEvWyEYjR4Zm35mZJw8D2NYCYUaGNGTIqWtkokFcXONF9VQBgOSMAMBuRmd/ptRUqaysscbHHm4uWm+Sbf3+a2oicw5mZFjXgtM9T5oOL9zQEP4mQB5P43wAtbVWn4BYdfbZVh+wzz9veRtjTu8hTtMAwC602fc/AoDoEBcXvTWbzbHPGzuYbMs92J4MzIE1AM4KZ5zKvlGFqqON3bzEngOgvj78Q9P5fI0FpKNHrVoFJ0XbmZmN1f8pKe3r0B0XJw0eHNr0BZP9VPNUAYA9o6cT8rlpM7rOna2nvOXljUPsRuMkYLb2FKwj0da3U6fG/kan45sF/kgEnvZ11eeL/uE/W5OYKJ13ntVn5IsvrN9801HOJOv3fTrnS0KCde3zeKzflv3U1l4HtJd9/tTWtn2iNHu0vqad0h3CWZ/Gqey5AELV+c7ns26udptluy18ODX9IR4/Hnud406lUyfradjhw+17+hCLUlKsC+WRI80PGWhMY6fzWHp61Bo7ODfGqgE4csR6+XxW4SWaO8nZhalvFuCasjvNhXMIUFtcnFXYPN0gKjm5sROuxxOZp8h2P4CMjOD3NQq37GwrX+xRpL451HGvXqcXtNlPXO2aU3uo2kjlHWJf0xqAtg7DbU+o5sBzzgGP3lzAfkoaytE3unWT9uyxCqidOoV/zHl7SD775hwLY2O3h8djdQT+4gvr+w1Vh+5oYLeJr6yUdu60Og02deKEdTP3eJwVACQlNXagb2iwmsz4fNZvKpo/p/2Awe6U3ZzjxxtHo4pVTScDMyYyT5E7d7Y6TXbr5oyarxEjAmsn7QKVx2O9TueJaVxcYx417bvBLMDoqIQE67xszzDcycnWddyBD+yoAYgFCQnWSRjKAqM9WdXhw9bNKdyFU5/P+pxVVdZndVoAIFk3/ljoFHq67P4c3bpJ27dbQ2I2VVvbeEOPxU6QzbE7aTet2fj668aCSjQHe3YA0NrY7nYAEIkagGCxq/ztkYAiUYj0eKxZdWOpSd+p2EP52jOt2m33g9Fcws4ju++UXQtAEyB0hD1IxbFjbW9S7eAaAAKAWOD1WidhKAuMnTtbNye7A3C42R2cv/7aKmTEysQi7ZGZaV1E7KYhTngC2JzEROtc6tLFys8dOwLXNw0AovnJeHskJjY2o5Os8/frrxsLRNH8Oe2CW9MO6t90/Lh1jYjloDU52fqs9ogekSpE9ukT2+3/wyk52bqWnDjR2BeAGgB0VNN5atp6LbMfHDjwnCMAiAV2ASKUTxHtsczj4sLf/EdqnEG2stJq/+/EwnFGhhXcfPVVbDelOBX7QunxWMMAfvSRNS6+zQ4AnHYjbzqhXkaG1TzCmLYPNxcpba0BiPU263FxjcO1OmECOjewHybU1FjXi7o6xz6NRRgkJjb2LWnrNdkOAGL54UcLCABigd1ePNQ1APZ485EY6s8OABoanNcB2ObzWQXimhp3BADGWMFkZaUVBNicGgBkZAR2gkxIsPI6micBkxprKVqrAairi8yDgWDLyLACACdMQOcGPl9jf5qEhMbrBsEbOsIuZ7TnoYxd9nLg9YIAIBbYTYBC+RQxPt5qo56WFpkRS+LirBqIlBRntv+35eRYFyCnBwDx8Y0dunv0sJoBHTxorbc7YXo8zrqRp6Wd/CT9xIno70DWlhoAKbbb/9s6d7ZqMyhExgZ7Dpzeva37U11d44ARQHs17afS1vJUXJw1ApnD5gCQCABiQ5cu0sCBob8B9+xptU+N1MXVHj0mmsdMP12ZmVaAE81NQk6X/ZTFLlBmZlqdu+1agNraxm2dVAhLS2ucT8NmjzYRrZOASdbvPTGx5RqA2trQj0IWLvYcHAQAscHOI3tgiro65wwcgPCzR55rb5Oebt0ced45sKG1AyUmSsOGhf44I0aE/hit6dTJ+QFARoZVII7mJ8Kny+5o1fSJcna2NSTokCFWgbKhwXlNgFJTG9uY253Ya2pio0YrOdlqqtWcqirr88R6HwCpsTrfKRPQOd0386iuLrqb0yH6paRI1dXtewh37rnR/RCng6gBQKNI3xQ7dbJqIRxY1eaXnm5VZTvhaWpL7BqAEycal9mToH30UWMfAKcN5xcXZ/XxsDsCS9ZT9VjIa7upRXMqK60mGE4IWu2nf06ugXOS5gIABz6JRRh1ZFhPe0Zqh+ERCKLHwIGtd0R0grg4aeJEZwc5LbUpt2sBevdu3M5JAYBkBXdNAx8pNp5YJie33Aegvj4yQwOHgj2iB4XI2PDNAMAYgjecntTU6G+WGSbUACB6OL35j83JhX/JCnKaK1Cmp1tzIBw+bP3txJFY0tKsQoo9GpAxsREAJCU1H3wfPWqtc8q49XYNQCzkCZqvkXbaNQPhlZzsjBHNgoAaAADBl5LSOOpPUz17Sl98Yf3fiR0x09KsAnNNTWMTp1h4YpmYGDiEqa2qyrpZRmJo4FCwawAIAGKD12s9qbVHDZOcd81AeA0a5PyWBm0U0RqARYsWyePxBLyys7NbfU9xcbFGjRqlpKQkDRgwQMuWLQtTagG0WUpK801K0tIaX04NAFJSrCfnJ07ETmGzpXyorrZGBnNKrVV8vFUT5YT+DG7g9Vo1ik0LbNQA4HQkJTljSOMgiHgToKFDh6q8vNz/2rZtW4vb7tmzR1OmTNG4ceO0ZcsWLVy4ULNmzdKqVavCmGIAp5Sa2nKbcnsuhKQk57XD9PmsAubRo42TgMVCDUBzAUBDg/Xk9RQPZWJOjx4UAGKF19s4p0h9vTObDQIREvEAwOv1Kjs72//q1kpb02XLlqlPnz56/PHHNXjwYN1000268cYb9eijj4YxxbGrrq5OBQUFmjhxogoKClTXpIDW0rr2Lg922jpy/GCnzc06/F36fCc1Kamrr1dBUZEm3nefCl59VXVtuJEHMy+Dec60uq+sLBX87/9q4sMPq+CNN1TXhqfnHfmcQU2zx6OCtWutvCkqUl19vXT4sOqSk1Xwq1+F/LcUjuuMf1/2ZwzBdxyufUXD8cOSZ5IK3npLEwsKVPDyy6qTwhoABPs+E8zfbDDfE0xOujfHWnrbzUTQ/fffb1JSUkzPnj1Nv379zDXXXGM+/fTTFrcfN26cmTVrVsCy1atXG6/Xa2pra5t9z/Hjx01lZaX/VVZWZiSZysrKoH6WWPDAAw8Yj8djJBmPx2MeeOCBU65r7/Jgp60jxw922tysw9/l9u3GPPqoMa++6n89cN11jfuSzAMzZoTu+O3cV3uP0+q+Zs40Hqldae7I5wxqmufODUzzddcZ8/TT5oFrrgnLbykc15lwfMfh2lc0HD8sebZwYeN5KZkHLrvMmK++Oq10t+v4Qb7PBPM3G8z3BJOT7s2xll5bZWVlm8q5Ea0BOPfcc/X888/rrbfe0ooVK1RRUaHzzz9fhw4danb7iooK9ejRI2BZjx49VFdXp4PNdTiUVFhYqPT0dP8rNzc36J8jVpSUlMj846msMUYlJSWnXNfe5cFOW0eOH+y0uVmHv8tmntKV7NjRuC9JJTt3hu747dxXe4/T6r4+/FB23Udb09yRzxnUNP/lL4Fp3rFDOnpUJZ9/HpbfUjiuM+H4jsO1r2g4fljybOPGxvNSUsmnn4a1BiDY95lg/maD+Z5gctK9OdbS214RDQAmT56sK6+8UsOHD9fFF1+s3/3ud5KkX//61y2+x/ONNsN25nxzuW3BggWqrKz0v8rKyoKU+tiTn5/v/548Ho/y8/NPua69y4Odto4cP9hpc7MOf5d2J8smzYDyhwxp3Jek/HPOCd3x27mv9h7nlPv6x//bmuaOfM6gpvm88wLTnJcnxcUpf+zYsPyWwnGdCcd3HK59RcPxw5Zn//i/R1L+oEFhDQCCfZ8J5m82mO8JJifdm2Mtve0VVcOApqamavjw4dq9e3ez67Ozs1VRURGw7MCBA/J6vcpqYZp6n88nHyM+SJIWLlwoyYpq8/Pz/X+3tq69y4Odto4cP9hpc7MOf5edOlkdLaurrZFxJC28+mprXzt2KL97dy285ZbQHb+d+2rvcVrd16JF0iefqOSvf1X+pZe2Kc0d+ZxBTfPdd0s7dqhk717lDx+uhRMmWMtvuklKTw/5bykc15lwfMfh2lc0HD8seXbvvdK2bSr55BPln3mmFl5xRVhnqw/2fSaYv9lgvieYnHRvjrX0tpfHmCaP6CKspqZGZ5xxhm655Rbdd999J62fP3++XnvtNe3YscO/7LbbbtPWrVu1YcOGNh2jqqpK6enpqqysVNo/CiYAQuDNN6Vdu6QBA05et2uXNHWqlJcX/nSFw5tvStu3S1ddJfXvH+nUnNqRI9JLL1lDmKalSXv2WDNzX3pppFMGt3vpJev8rK+XuneXvv/9SKcIiGptLedGtAnQvHnzVFxcrD179uiDDz7QVVddpaqqKl1//fWSrOY7M2bM8G9/6623au/evZo7d6527typX/3qV1q5cqXmzZsXqY8AoCVnnmkNBdrSpCtOmwOgqe7drcJ0LMwBIFl5YQ+3KEm1tVLv3pFNEyBZw+g2NFjnZkpKpFMDOEZEmwB98cUXuvbaa3Xw4EF169ZN5513njZu3Ki+fftKksrLy7Vv3z7/9v3799cbb7yhO++8U0899ZRycnL05JNP6sorr4zURwDQktxcKStL+vJLqenwvg0N1vj/Th7POy3Nmg8gFuYAkKwAwOu1Arbjx60+HF27RjpVgHUu1tdbE+vFSkANxICIBgBFRUWtrn/uuedOWjZ+/Hht3rw5RCkCEDRJSda06++/HxgA1Nc7cxbgprp0kTIyYmfCKTsgq6mRqqqstBMAIBr4fI01idQAAEET8YnAADhY375WQf/YscZldXVWcxMnBwBZWdLkybH1GZOSrLypqpL69AlrZ0ugRYmJVq2h/X8AQUEAACB0srOlnByp6Twddg2A02/mbZgBOKrYAUBDg9SzZ6RTA1iSkhr7pjj9mgGEEQEAgNCJi7NG+jl6tPEp3okTzm8CFIuSk6XKSquZBc1/EC2a1kRxzQCChgAAQGj16WN1iK2stP6ur3d+E6BYlJRk9QHIypIyMyOdGsBiBwBOHzgACDMCAAChlZZmzQVw6JD1d12ddSOPtSYyTpeYaL369bMKW0A0sEenio8nAACCiAAAQOjZk4GdOGHdzBnNI/okJFhP/rt3j3RKgEZer2QMzQaBICMAABB6vXtbQ4EeOmQ1AYqV8fHdJCHBGr606ZCtQKR5vdbTfzcMHACEEQEAgNBLSLA6A1dWUgMQrTIzpbPOip25C+AOdgCQkEAAAAQRAz0DCI++fa2C/6FDzOgZjbp3p/kPoo/Xa40mxsABQFBRAwAgPLp2lXJzreFAuZEDaIuEBKvwn5RkBQIAgoJfE4Dw8HisJiYZGVTlA2ib+HjrRbNBIKgIAACET26uNcssNQAA2sKuAaDZIBBU9AEAED6pqdL551uTTQHAqdidgKkBAIKKAABAePXuHekUAIgV9vj/DB0MBBVNgAAAQHTyeiWfj35DQJARAAAAgOjk8VjNf+g3BAQVTYAAAED0ysuTevSIdCoARyEAAAAA0WvgwEinAHAcmgABAAAALkIAAAAAALgIAQAAAADgIgQAAAAAgIsQAAAAAAAuQgAAAAAAuAgBAAAAAOAiBAAAAACAixAAAAAAAC5CAAAAAAC4CAEAAAAA4CIEAAAAAICLEAAAAAAALkIAAAAAALgIAQAAAADgIlETABQWFsrj8WjOnDktbrN+/Xp5PJ6TXh9//HH4EgoAAADEMG+kEyBJmzZt0vLlyzVixIg2bf/JJ58oLS3N/3e3bt1ClTQAAADAUSJeA3D48GFNmzZNK1asUGZmZpve0717d2VnZ/tf8fHxLW5bU1OjqqqqgBcAAADgVhEPAGbOnKmpU6fq4osvbvN7Ro4cqZ49e2rChAl69913W922sLBQ6enp/ldubu7pJhkAAACIWRENAIqKirR582YVFha2afuePXtq+fLlWrVqlVavXq1BgwZpwoQJeu+991p8z4IFC1RZWel/lZWVBSv5AAAAQMyJWB+AsrIyzZ49W2vXrlVSUlKb3jNo0CANGjTI//eYMWNUVlamRx99VBdccEGz7/H5fPL5fEFJMwAAABDrIlYDUFpaqgMHDmjUqFHyer3yer0qLi7Wk08+Ka/Xq/r6+jbt57zzztPu3btDnFoAAADAGSJWAzBhwgRt27YtYNkNN9ygvLw8zZ8/v9WOvU1t2bJFPXv2DEUSAQAAAMeJWADQuXNnDRs2LGBZamqqsrKy/MsXLFig/fv36/nnn5ckPf744+rXr5+GDh2q2tpavfDCC1q1apVWrVoV9vQDAAAAsSgq5gFoSXl5ufbt2+f/u7a2VvPmzdP+/fuVnJysoUOH6ne/+52mTJkSwVQCAAAAscNjjDGRTkQ4VVVVKT09XZWVlQGTiQEAAACxrK3l3IjPAwAAAAAgfAgAAAAAABchAAAAAABchAAAAAAAcBECAAAAAMBFCAAAAAAAFyEAAAAAAFyEAAAAAABwEQIAAAAAwEUIAAAAAAAXIQAAAAAAXIQAAAAAAHARAgAAAADARQgAAAAAABchAAAAAABchAAAAAAAcBECAAAAAMBFCAAAAAAAFyEAAAAAAFyEAAAAAABwEQIAAAAAwEUIAAAAAAAXIQAAAAAAXIQAAAAAAHARAgAAAADARQgAAAAAABchAAAAAABchAAAAAAAcBECAAAAAMBFCAAAAAAAFyEAAAAAAFyEAAAAAABwkagJAAoLC+XxeDRnzpxWtysuLtaoUaOUlJSkAQMGaNmyZeFJIAAAAOAAUREAbNq0ScuXL9eIESNa3W7Pnj2aMmWKxo0bpy1btmjhwoWaNWuWVq1aFaaUAgAAALEt4gHA4cOHNW3aNK1YsUKZmZmtbrts2TL16dNHjz/+uAYPHqybbrpJN954ox599NEwpfb01NXVqaCgQBMnTlRBQYHq6uoinSSgQ1o7lznPAQDRhntTIG+kEzBz5kxNnTpVF198sf793/+91W03bNigiRMnBiybNGmSVq5cqRMnTighIeGk99TU1Kimpsb/d1VVVXAS3gEPPfSQFi1aJGOM3n77bUnSfffdF7H0AB3V2rnMeQ4AiDbcmwJFtAagqKhImzdvVmFhYZu2r6ioUI8ePQKW9ejRQ3V1dTp48GCz7yksLFR6err/lZube9rp7qiSkhIZYyRJxhiVlJRELC3A6WjtXOY8BwBEG+5NgSIWAJSVlWn27Nl64YUXlJSU1Ob3eTyegL/tzPzmctuCBQtUWVnpf5WVlXU80acpPz/fn06Px6P8/PyIpQU4Ha2dy5znAIBow70pUMSaAJWWlurAgQMaNWqUf1l9fb3ee+89LV26VDU1NYqPjw94T3Z2tioqKgKWHThwQF6vV1lZWc0ex+fzyefzBf8DdMDChQslWVFofn6+/28g1rR2LnOeAwCiDfemQB5jP0IPs+rqau3duzdg2Q033KC8vDzNnz9fw4YNO+k98+fP12uvvaYdO3b4l912223aunWrNmzY0KbjVlVVKT09XZWVlUpLSzu9DwEAAABEibaWcyNWA9C5c+eTCvmpqanKysryL1+wYIH279+v559/XpJ06623aunSpZo7d65uvvlmbdiwQStXrtTLL78c9vQDAAAAsSjiw4C2pry8XPv27fP/3b9/f73xxhtav369zj77bD344IN68skndeWVV0YwlQAAAEDsiFgToEihCRAAAACcqK3l3KiuAQAAAAAQXAQAAAAAgIsQAAAAAAAuQgAAAAAAuAgBAAAAAOAiBAAAAACAixAAAAAAAC5CAAAAAAC4CAEAAAAA4CIEAAAAAICLeCOdgHAzxkiypkoGAAAAnMIu39rl3Za4LgCorq6WJOXm5kY4JQAAAEDwVVdXKz09vcX1HnOqEMFhGhoa9Pe//12dO3eWx+MJ+/GrqqqUm5ursrIypaWlhf34iCzy393If3cj/8E54G7hyH9jjKqrq5WTk6O4uJZb+ruuBiAuLk69e/eOdDKUlpbGj9/FyH93I//djfwH54C7hTr/W3vyb6MTMAAAAOAiBAAAAACAixAAhJnP59P9998vn88X6aQgAsh/dyP/3Y38B+eAu0VT/ruuEzAAAADgZtQAAAAAAC5CAAAAAAC4CAEAAAAA4CIEAAAAAICLEACE2dNPP63+/fsrKSlJo0aN0h//+MdIJwlBVlhYqG9/+9vq3LmzunfvriuuuEKffPJJwDbGGC1atEg5OTlKTk7WhRdeqI8++ihCKUYoFRYWyuPxaM6cOf5l5L/z7d+/X9OnT1dWVpZSUlJ09tlnq7S01L+ec8C56urq9G//9m/q37+/kpOTNWDAABUUFKihocG/DfnvHO+9956++93vKicnRx6PR7/97W8D1rclr2tqavTjH/9YXbt2VWpqqi6//HJ98cUXIU03AUAYvfLKK5ozZ47uvfdebdmyRePGjdPkyZO1b9++SCcNQVRcXKyZM2dq48aNWrdunerq6jRx4kQdOXLEv80jjzyixx57TEuXLtWmTZuUnZ2tSy65RNXV1RFMOYJt06ZNWr58uUaMGBGwnPx3tq+++kpjx45VQkKC3nzzTe3YsUNLlixRRkaGfxvOAef62c9+pmXLlmnp0qXauXOnHnnkEf385z/XL3/5S/825L9zHDlyRN/61re0dOnSZte3Ja/nzJmjNWvWqKioSCUlJTp8+LAuu+wy1dfXhy7hBmHzne98x9x6660By/Ly8sxPfvKTCKUI4XDgwAEjyRQXFxtjjGloaDDZ2dnm4Ycf9m9z/Phxk56ebpYtWxapZCLIqqurzVlnnWXWrVtnxo8fb2bPnm2MIf/dYP78+SY/P7/F9ZwDzjZ16lRz4403Biz7/ve/b6ZPn26MIf+dTJJZs2aN/++25PXXX39tEhISTFFRkX+b/fv3m7i4OPP73/8+ZGmlBiBMamtrVVpaqokTJwYsnzhxot5///0IpQrhUFlZKUnq0qWLJGnPnj2qqKgIOBd8Pp/Gjx/PueAgM2fO1NSpU3XxxRcHLCf/ne/VV1/V6NGjdfXVV6t79+4aOXKkVqxY4V/POeBs+fn5euedd7Rr1y5J0l//+leVlJRoypQpksh/N2lLXpeWlurEiRMB2+Tk5GjYsGEhPR+8IdszAhw8eFD19fXq0aNHwPIePXqooqIiQqlCqBljNHfuXOXn52vYsGGS5M/v5s6FvXv3hj2NCL6ioiJt3rxZmzZtOmkd+e98n332mZ555hnNnTtXCxcu1J///GfNmjVLPp9PM2bM4BxwuPnz56uyslJ5eXmKj49XfX29Fi9erGuvvVYS1wA3aUteV1RUKDExUZmZmSdtE8ryIQFAmHk8noC/jTEnLYNz3HHHHfrwww9VUlJy0jrOBWcqKyvT7NmztXbtWiUlJbW4HfnvXA0NDRo9erQeeughSdLIkSP10Ucf6ZlnntGMGTP823EOONMrr7yiF154QS+99JKGDh2qrVu3as6cOcrJydH111/v3478d4+O5HWozweaAIVJ165dFR8ff1I0d+DAgZMiQzjDj3/8Y7366qt699131bt3b//y7OxsSeJccKjS0lIdOHBAo0aNktfrldfrVXFxsZ588kl5vV5/HpP/ztWzZ08NGTIkYNngwYP9Az5wDXC2u+++Wz/5yU/0gx/8QMOHD9cPf/hD3XnnnSosLJRE/rtJW/I6OztbtbW1+uqrr1rcJhQIAMIkMTFRo0aN0rp16wKWr1u3Tueff36EUoVQMMbojjvu0OrVq/WHP/xB/fv3D1jfv39/ZWdnB5wLtbW1Ki4u5lxwgAkTJmjbtm3aunWr/zV69GhNmzZNW7du1YABA8h/hxs7duxJQ//u2rVLffv2lcQ1wOmOHj2quLjA4lV8fLx/GFDy3z3aktejRo1SQkJCwDbl5eXavn17aM+HkHUvxkmKiopMQkKCWblypdmxY4eZM2eOSU1NNZ9//nmkk4Yguu2220x6erpZv369KS8v97+OHj3q3+bhhx826enpZvXq1Wbbtm3m2muvNT179jRVVVURTDlCpekoQMaQ/0735z//2Xi9XrN48WKze/du8+KLL5qUlBTzwgsv+LfhHHCu66+/3vTq1cu8/vrrZs+ePWb16tWma9eu5p577vFvQ/47R3V1tdmyZYvZsmWLkWQee+wxs2XLFrN3715jTNvy+tZbbzW9e/c2b7/9ttm8ebO56KKLzLe+9S1TV1cXsnQTAITZU089Zfr27WsSExPNOeec4x8aEs4hqdnXs88+69+moaHB3H///SY7O9v4fD5zwQUXmG3btkUu0QipbwYA5L/zvfbaa2bYsGHG5/OZvLw8s3z58oD1nAPOVVVVZWbPnm369OljkpKSzIABA8y9995rampq/NuQ/87x7rvvNnvPv/76640xbcvrY8eOmTvuuMN06dLFJCcnm8suu8zs27cvpOn2GGNM6OoXAAAAAEQT+gAAAAAALkIAAAAAALgIAQAAAADgIgQAAAAAgIsQAAAAAAAuQgAAAAAAuAgBAAAAAOAiBAAAAACAixAAAIBL9OvXT48//nikkxE069evl8fj0ddffx3ppABATCEAAAAHKCsr07/8y78oJydHiYmJ6tu3r2bPnq1Dhw5FOmlBceGFF2rOnDkBy84//3yVl5crPT09MokCgBhFAAAAMe6zzz7T6NGjtWvXLr388sv629/+pmXLlumdd97RmDFj9OWXX0YkXfX19WpoaAjZ/hMTE5WdnS2PxxOyYwCAExEAAECMmzlzphITE7V27VqNHz9effr00eTJk/X2229r//79uvfee/3bVldX67rrrlOnTp2Uk5OjX/7ylwH7WrRokfr06SOfz6ecnBzNmjXLv662tlb33HOPevXqpdTUVJ177rlav369f/1zzz2njIwMvf766xoyZIh8Pp9WrFihpKSkk5rpzJo1S+PHj5ckHTp0SNdee6169+6tlJQUDR8+XC+//LJ/2x/96EcqLi7WE088IY/HI4/Ho88//7zZJkCrVq3S0KFD5fP51K9fPy1ZsiTguP369dNDDz2kG2+8UZ07d1afPn20fPnyjn71ABCTCAAAIIZ9+eWXeuutt3T77bcrOTk5YF12dramTZumV155RcYYSdLPf/5zjRgxQps3b9aCBQt05513at26dZKk//mf/9EvfvEL/cd//Id2796t3/72txo+fLh/fzfccIP+9Kc/qaioSB9++KGuvvpqXXrppdq9e7d/m6NHj6qwsFD/+Z//qY8++kjTp09XRkaGVq1a5d+mvr5ev/nNbzRt2jRJ0vHjxzVq1Ci9/vrr2r59u2655Rb98Ic/1AcffCBJeuKJJzRmzBjdfPPNKi8vV3l5uXJzc0/6LkpLS/XP//zP+sEPfqBt27Zp0aJF+ulPf6rnnnsuYLslS5Zo9OjR2rJli26//Xbddttt+vjjj08jFwAgxhgAQMzauHGjkWTWrFnT7PrHHnvMSDL/93//Z/r27WsuvfTSgPXXXHONmTx5sjHGmCVLlpiBAwea2trak/bzt7/9zXg8HrN///6A5RMmTDALFiwwxhjz7LPPGklm69atAdvMmjXLXHTRRf6/33rrLZOYmGi+/PLLFj/XlClTzF133eX/e/z48Wb27NkB27z77rtGkvnqq6+MMcZcd9115pJLLgnY5u677zZDhgzx/923b18zffp0/98NDQ2me/fu5plnnmkxLQDgNNQAAICDmX88+bfbyY8ZMyZg/ZgxY7Rz505J0tVXX61jx45pwIABuvnmm7VmzRrV1dVJkjZv3ixjjAYOHKhOnTr5X8XFxfr000/9+0tMTNSIESMCjjFt2jStX79ef//73yVJL774oqZMmaLMzExJVo3A4sWLNWLECGVlZalTp05au3at9u3b167PunPnTo0dOzZg2dixY7V7927V19f7lzVNn8fjUXZ2tg4cONCuYwFALCMAAIAYduaZZ8rj8WjHjh3Nrv/444+VmZmprl27trgPOzjIzc3VJ598oqeeekrJycm6/fbbdcEFF+jEiRNqaGhQfHy8SktLtXXrVv9r586deuKJJ/z7Sk5OPqlT7ne+8x2dccYZKioq0rFjx7RmzRpNnz7dv37JkiX6xS9+oXvuuUd/+MMftHXrVk2aNEm1tbXt+i6MMScd2w6AmkpISDjp84eyszIARBtvpBMAAOi4rKwsXXLJJXr66ad15513BvQDqKio0IsvvqgZM2b4C8YbN24MeP/GjRuVl5fn/zs5OVmXX365Lr/8cs2cOVN5eXnatm2bRo4cqfr6eh04cEDjxo1rdzqvu+46vfjii+rdu7fi4uI0depU/7o//vGP+t73vucPChoaGrR7924NHjzYv01iYmLAU/zmDBkyRCUlJQHL3n//fQ0cOFDx8fHtTjMAOBU1AAAQ45YuXaqamhpNmjRJ7733nsrKyvT73/9el1xyiXr16qXFixf7t/3Tn/6kRx55RLt27dJTTz2l//7v/9bs2bMlWaP4rFy5Utu3b9dnn32m//qv/1JycrL69u2rgQMHatq0aZoxY4ZWr16tPXv2aNOmTfrZz36mN95445RpnDZtmjZv3qzFixfrqquuUlJSkn/dmWeeqXXr1un999/Xzp079a//+q+qqKgIeH+/fv30wQcf6PPPP9fBgwebfWJ/11136Z133tGDDz6oXbt26de//rWWLl2qefPmdfSrBQBHIgAAgBh31lln6S9/+YvOOOMMXXPNNTrjjDN0yy236J/+6Z+0YcMGdenSxb/tXXfdpdLSUo0cOVIPPviglixZokmTJkmSMjIytGLFCo0dO1YjRozQO++8o9dee01ZWVmSpGeffVYzZszQXXfdpUGDBunyyy/XBx980OyIPM2l8dvf/rY+/PBD/+g/tp/+9Kc655xzNGnSJF144YXKzs7WFVdcEbDNvHnzFB8fryFDhqhbt27N9g8455xz9Jvf/EZFRUUaNmyY7rvvPhUUFOhHP/pRO79RAHA2j2mugSQAAAAAR6IGAAAAAHARAgAAAADARQgAAAAAABchAAAAAABchAAAAAAAcBECAAAAAMBFCAAAAAAAFyEAAAAAAFyEAAAAAABwEQIAAAAAwEUIAAAAAAAX+X94PxNPEotkOAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Function for plotting\n", "def plot_bootstrap_intervals(lower, upper, y_new, start=0, end=None):\n", "\n", " subset_range = slice(start, end)\n", "\n", " # Ensuring data is 1D\n", " lower = np.array(lower).flatten()\n", " upper = np.array(upper).flatten()\n", " y_new = np.array(y_new).flatten()\n", " \n", " fig, ax = plt.subplots(figsize=(9,5))\n", " \n", " plt.xlabel('Observation')\n", " plt.ylabel('Quality')\n", " plt.title('Predicted Wine Quality')\n", " plt.legend(loc='upper right')\n", "\n", " # Intervals\n", " plt.fill_between(np.arange(start, end if end is not None else len(lower)),\n", " lower[subset_range], \n", " upper[subset_range], \n", " color='red', \n", " alpha=0.3, \n", " label='Bootstrap Interval')\n", "\n", " # True values\n", " plt.scatter(np.arange(start, end if end is not None else len(y_new)), \n", " y_new[subset_range], \n", " color='black', \n", " s=5, \n", " label='True Values')\n", "\n", " plt.legend()\n", " plt.show()\n", "\n", "# Plot\n", "plot_bootstrap_intervals(lower, upper, y_new, start=0, end=100) # This will display the first 100 data points" ] }, { "cell_type": "markdown", "id": "75de8c49", "metadata": {}, "source": [ "### Non-conformity Scores" ] }, { "cell_type": "code", "execution_count": 110, "id": "a928e597", "metadata": {}, "outputs": [], "source": [ "# Predicitions\n", "predictions = model.predict(X_calib)\n", "\n", "# Non-conformity score\n", "scores = np.abs(y_calib - predictions)" ] }, { "cell_type": "markdown", "id": "658b53e0", "metadata": {}, "source": [ "### Estimating Treshold" ] }, { "cell_type": "code", "execution_count": 111, "id": "699c9476", "metadata": {}, "outputs": [], "source": [ "# Error rate\n", "alpha = 0.05\n", "\n", "# Quantile\n", "q_level = np.ceil((len(scores) + 1) * (1 - alpha)) / len(scores)\n", "\n", "# Treshold\n", "qhat = np.quantile(scores, q_level, interpolation='higher')" ] }, { "cell_type": "markdown", "id": "1d97dcb6", "metadata": {}, "source": [ "### Plot" ] }, { "cell_type": "code", "execution_count": 112, "id": "3a09bfee", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvwAAAHUCAYAAABGT/xJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABWyElEQVR4nO3dd3hUZfr/8c8kJJMeIJCESEgoAekIWGjS4QeoFNlVQQTRVRdQERAXXRUVicDKwooiWCjrIq4KrIqUSGcBF4QoBKQZihIMTUISkkDy/P7INyNDCumTzLxf13Wu68xz2j1nDuSeZ55zH4sxxggAAACAU3JzdAAAAAAAyg4JPwAAAODESPgBAAAAJ0bCDwAAADgxEn4AAADAiZHwAwAAAE6MhB8AAABwYiT8AAAAgBMj4QcAAACcGAk/4AIWLlwoi8Vim7y8vBQaGqquXbsqOjpaiYmJubaZPHmyLBZLkY6TmpqqyZMna+PGjUXaLq9jRUZG6q677irSfm5kyZIlmjVrVp7LLBaLJk+eXKrHK23r1q1T27Zt5evrK4vFohUrVuS53rFjx2yf9dKlS3MtzznfZ8+eLeOIK5Y9e/aoc+fOCgwMlMViyfdaKG8bN26UxWKx+3fz9ddfl8n1eOXKFc2bN0+33nqrqlevLh8fH0VERKh///5avnx5qR8PQMVAwg+4kAULFmj79u2KiYnR22+/rVatWmnatGlq3LixvvnmG7t1H330UW3fvr1I+09NTdUrr7xS5IS/OMcqjoIS/u3bt+vRRx8t8xiKyxijP/7xj/Lw8NAXX3yh7du3q3Pnzjfc7oUXXtCVK1fKIcKKb+TIkUpISNDSpUu1fft23X///Y4OSZLUunVrbd++Xa1bt7a1ff3113rllVdK/VjDhg3Tk08+qa5du+qjjz7Sl19+qb/+9a+qUqWK1qxZU+rHA1AxVHF0AADKT7NmzdS2bVvb63vvvVfPPPOMOnbsqEGDBunw4cMKCQmRJNWuXVu1a9cu03hSU1Pl4+NTLse6kTvuuMOhx7+RU6dO6fz58xo4cKC6d+9eqG369OmjVatW6d1339WTTz5ZxhFWfPv27dOf/vQn9enTp1T2d+XKFVksFlWpUrI/pQEBAeVy/cXHx+uTTz7RSy+9ZPdlonv37vrTn/6krKysMo8hhzFGaWlp8vb2LrdjAq6MHn7AxdWpU0dvvvmmLl26pHnz5tna8xpms379enXp0kVBQUHy9vZWnTp1dO+99yo1NVXHjh1TzZo1JUmvvPKKbUjJiBEj7Pa3e/duDR48WNWqVVP9+vXzPVaO5cuXq0WLFvLy8lK9evX0j3/8w255znClY8eO2bVfP0yiS5cuWrlypY4fP243vClHXkN69u3bp/79+6tatWry8vJSq1attGjRojyP8/HHH+uFF15QWFiYAgIC1KNHDx08eDD/E3+NrVu3qnv37vL395ePj4/at2+vlStX2pZPnjzZ9oXoueeek8ViUWRk5A33261bN/Xu3VuvvfaaLl26dMP1P/zwQ7Vs2VJeXl6qXr26Bg4cqAMHDtitM2LECPn5+enIkSPq27ev/Pz8FB4ervHjxys9Pb1Q7zcrK0tvvfWWWrVqJW9vb1WtWlV33HGHvvjiC7t1pk+frptvvllWq1XBwcF66KGH9PPPP9vtq0uXLmrWrJl27typTp06ycfHR/Xq1dMbb7xhS2BzrpGrV69q7ty5uT77onzO//znPzV+/HjddNNNslqtOnLkiO2c/Pjjj+rdu7d8fX1Vq1YtvfHGG5KkHTt2qGPHjvL19VXDhg3z3XfOtTpixAi9/fbbkmR3rR47dkzdu3fXzTffLGOM3T6MMWrQoIH69euX73k/d+6cJKlWrVp5Lndzs08JfvvtN40fP1716tWzfQZ9+/bVjz/+aFvn/PnzGjVqlG666SZ5enqqXr16euGFF3JdCxaLRWPGjNG7776rxo0by2q12s7D4cOHNWTIEAUHB8tqtapx48a2958jKytLU6ZMUaNGjWzXTIsWLTR79ux83y+AaxgATm/BggVGktm5c2eey5OTk427u7vp3r27re3ll1821/4XER8fb7y8vEzPnj3NihUrzMaNG82//vUvM2zYMHPhwgWTlpZmVq9ebSSZRx55xGzfvt1s377dHDlyxG5/ERER5rnnnjMxMTFmxYoVeR7LGGMiIiLMTTfdZOrUqWM+/PBD8/XXX5uhQ4caSWbGjBm53lt8fLzd9hs2bDCSzIYNG4wxxsTFxZkOHTqY0NBQW2zbt2+3rS/JvPzyy7bXP/74o/H39zf169c3ixcvNitXrjQPPPCAkWSmTZuW6ziRkZFm6NChZuXKlebjjz82derUMVFRUebq1asFfjYbN240Hh4epk2bNuaTTz4xK1asML169TIWi8UsXbrUGGPMyZMnzbJly4wk8+STT5rt27eb3bt357vP+Ph423mKjY01FovFvPjii7blOef7zJkztrapU6caSeaBBx4wK1euNIsXLzb16tUzgYGB5tChQ7b1hg8fbjw9PU3jxo3N3/72N/PNN9+Yl156yVgsFvPKK68U+F5zDBs2zFgsFvPoo4+a//znP2bVqlXm9ddfN7Nnz7at89hjjxlJZsyYMWb16tXm3XffNTVr1jTh4eF2cXfu3NkEBQWZqKgo8+6775qYmBgzatQoI8ksWrTIGGNMYmKi2b59u5FkBg8ebPfZF/Vzvummm8zgwYPNF198Yb766itz7tw5u3Mye/ZsExMTYx5++GEjyUyaNMk0bNjQfPDBB2bNmjXmrrvuMpLMrl27cu0751o9cuSIGTx4sJFkd62mpaWZ//znP0aSiYmJsTunK1euNJLMypUr8z3vycnJpmrVqiY0NNTMmzcv17+ZayUlJZmmTZsaX19f8+qrr5o1a9aYzz//3Dz99NNm/fr1xhhjLl++bFq0aGF8fX3N3/72N7N27Vrz4osvmipVqpi+ffva7S/n3LVo0cIsWbLErF+/3uzbt8/ExcWZwMBA07x5c7N48WKzdu1aM378eOPm5mYmT55s2z46Otq4u7ubl19+2axbt86sXr3azJo1y24dAPkj4QdcwI0SfmOMCQkJMY0bN7a9vj4J/+yzz4wkExsbm+8+zpw5kytxvn5/L730Ur7LrhUREWEsFkuu4/Xs2dMEBASYlJQUu/d2o4TfGGP69etnIiIi8oz9+rjvv/9+Y7VazYkTJ+zW69Onj/Hx8TG//fab3XGuT3D+/e9/2xK2gtxxxx0mODjYXLp0ydZ29epV06xZM1O7dm2TlZVljLFP4m/k+nWHDh1qfH19TUJCgjEmd8J/4cIF4+3tnes9nDhxwlitVjNkyBBb2/Dhw40k8+9//9tu3b59+5pGjRrdMLbNmzcbSeaFF17Id50DBw4YSWbUqFF27d9++62RZJ5//nlbW+fOnY0k8+2339qt26RJE9O7d2+7Nklm9OjRdm1F/ZzvvPPOXPHmnJPPP//c1nblyhVTs2ZNI8nuy9m5c+eMu7u7GTdunK0tr2t19OjRuf5NGGNMZmamqVevnunfv3+ueOvXr2+7XvKzcuVKU6NGDSPJSDJBQUHmD3/4g/niiy/s1nv11Vfz/GJxrXfffTfPa2HatGlGklm7dq2tTZIJDAw058+ft1u3d+/epnbt2ubixYt27WPGjDFeXl629e+66y7TqlWrAt8bgPwxpAeAJOUaInC9Vq1aydPTU4899pgWLVqkn376qVjHuffeewu9btOmTdWyZUu7tiFDhigpKUm7d+8u1vELa/369erevbvCw8Pt2keMGKHU1NRcNxnfc889dq9btGghSTp+/Hi+x0hJSdG3336rwYMHy8/Pz9bu7u6uYcOG6eeffy70sKCCTJkyRVeuXMn3JtDt27fr8uXLtuFXOcLDw9WtWzetW7fOrt1isejuu++2a2vRooXde83MzNTVq1dtU87wmlWrVkmSRo8enW+8GzZskKRc8dx2221q3LhxrnhCQ0N12223FRhPfor6Oed3/VosFvXt29f2ukqVKmrQoIFq1aqlW265xdZevXp1BQcHFyq2vLi5uWnMmDH66quvdOLECUnS0aNHtXr1ao0aNeqGlbX69u2rEydOaPny5ZowYYKaNm2qFStW6J577tGYMWNs661atUoNGzZUjx498t3X+vXr5evrq8GDB9u153xu139O3bp1U7Vq1Wyv09LStG7dOg0cOFA+Pj5210vfvn2VlpamHTt2SMr+7L///nuNGjVKa9asUVJS0o1PFgAbEn4ASklJ0blz5xQWFpbvOvXr19c333yj4OBgjR49WvXr11f9+vWLPIY2v/HDeQkNDc23LWc8clk5d+5cnrHmnKPrjx8UFGT32mq1SpIuX76c7zEuXLggY0yRjlMckZGRGjVqlN5//30dPnw41/KCxnaHhYXlisHHx0deXl52bVarVWlpabbX3bt3l4eHh20aOXKkJOnMmTNyd3fP87MtbjzXn/uceAo699ceqyjnP7/rN69z4unpqerVq+da19PT0+5cFdXIkSPl7e2td999V5L09ttvy9vb23aOb8Tb21sDBgzQjBkztGnTJh05ckRNmjTR22+/rbi4OEnZn9ONbqQ/d+6cQkNDc33JCA4OVpUqVW547s6dO6erV6/qrbfesrtWPDw8bF+eckrHTpo0SX/729+0Y8cO9enTR0FBQerevbt27dpVqPcMuDoSfgBauXKlMjMz1aVLlwLX69Spk7788ktdvHhRO3bsULt27TR27Ng8a73npyi1/U+fPp1vW06Sl5NkXX+TYElrzAcFBSkhISFX+6lTpyRJNWrUKNH+JalatWpyc3Mr8+NI0l//+lf5+Pjo+eefz7Us51zmF0dxYpg3b5527txpm3JuiK5Zs6YyMzPz/GzLMp6CjlWU81/UZ1OUhcDAQA0fPlzvv/++zp8/rwULFmjIkCGqWrVqsfZXp04dPfbYY5JkS/hr1qyZ6wbp6wUFBenXX3/N9etgYmKirl69esNzV61aNbm7u2vEiBF218q1U07iX6VKFY0bN067d+/W+fPn9fHHH+vkyZPq3bu3UlNTi/W+AVdCwg+4uBMnTmjChAkKDAzU448/Xqht3N3ddfvtt9sqaeQMrylMr3ZRxMXF6fvvv7drW7Jkifz9/W01y3Oq1fzwww92611b8SVHYXt9pewe6vXr19sSvxyLFy+Wj49PqZRR9PX11e23365ly5bZxZWVlaWPPvpItWvXVsOGDUt8HCk7OXvuuef02Wef6X//+5/dsnbt2snb21sfffSRXfvPP/9sG/JSVI0aNVLbtm1tU87nlFMSc+7cuflu261bN0nKFc/OnTt14MCBYsWTn/L4nIvjRv+WnnrqKZ09e1aDBw/Wb7/9ZjccJz+XLl1ScnJynstyqjHl/LLRp08fHTp0SOvXr893f927d1dycnKuB8AtXrzYtrwgPj4+6tq1q/bs2aMWLVrYXS85U16/3lStWlWDBw/W6NGjdf78+VwVugDkRh1+wIXs27fPNkY2MTFRW7Zs0YIFC+Tu7q7ly5fbymrm5d1339X69evVr18/1alTR2lpafrwww8lyTbO19/fXxEREfrPf/6j7t27q3r16qpRo0ahSkjmJSwsTPfcc48mT56sWrVq6aOPPlJMTIymTZsmHx8fSdKtt96qRo0aacKECbp69aqqVaum5cuXa+vWrbn217x5cy1btkxz585VmzZt5ObmZvdcgmu9/PLL+uqrr9S1a1e99NJLql69uv71r39p5cqVmj59ugIDA4v1nq4XHR2tnj17qmvXrpowYYI8PT31zjvvaN++ffr4449LtUd57Nixevvtt23j6HNUrVpVL774op5//nk99NBDeuCBB3Tu3Dm98sor8vLy0ssvv1xqMXTq1EnDhg3TlClT9Ouvv+quu+6S1WrVnj175OPjoyeffFKNGjXSY489prfeektubm7q06ePjh07phdffFHh4eF65plnSi2e8vqci6p58+aSpGnTpqlPnz5yd3dXixYt5OnpKUlq2LCh/t//+39atWqVOnbsmOtel7wcPHhQvXv31v3336/OnTurVq1aunDhglauXKn58+erS5cuat++vaTsa+WTTz5R//799Ze//EW33XabLl++rE2bNumuu+5S165d9dBDD+ntt9/W8OHDdezYMTVv3lxbt27V1KlT1bdv3wLH/+eYPXu2OnbsqE6dOunPf/6zIiMjdenSJR05ckRffvml7QvH3XffbXuOSM2aNXX8+HHNmjVLERERioqKKu5pBlyHg28aBlAOcirZ5Eyenp4mODjYdO7c2UydOtUkJibm2ub6yjnbt283AwcONBEREcZqtZqgoCDTuXPnXNU9vvnmG3PLLbcYq9VqJJnhw4fb7e/akor5HcuY7Co9/fr1M5999plp2rSp8fT0NJGRkWbmzJm5tj906JDp1auXCQgIMDVr1jRPPvmkrUzhtZVPzp8/bwYPHmyqVq1qLBaL3TGVR3WhvXv3mrvvvtsEBgYaT09P07JlS7NgwQK7dXIqrHz66ad27TmVcq5fPy9btmwx3bp1M76+vsbb29vccccd5ssvv8xzf8Wp0nOt+fPn266D6z+L999/37Ro0cJ4enqawMBA079/fxMXF2e3zvDhw42vr2+u/eb1GeYnMzPT/P3vfzfNmjWzHatdu3Z27zkzM9NMmzbNNGzY0Hh4eJgaNWqYBx980Jw8edJuX507dzZNmzbNdYzhw4fnqsikPKr0GFOyzznnWHmdk/xiy7m2r9/3tddqenq6efTRR03NmjVt1+r1lagWLlxoJNnKt97IhQsXzJQpU0y3bt3MTTfdZDw9PY2vr69p1aqVmTJliklNTc21/tNPP23q1KljPDw8THBwsOnXr5/58ccfbeucO3fOPPHEE6ZWrVqmSpUqJiIiwkyaNMmkpaXZ7Su/c29M9vU6cuRIc9NNNxkPDw9Ts2ZN0759ezNlyhTbOm+++aZp3769qVGjhvH09DR16tQxjzzyiDl27Fih3jvg6izG3KA0BwAAqHDuvfde7dixQ8eOHZOHh4ejwwFQgTGkBwCASiI9PV27d+/W//73Py1fvlwzZ84k2QdwQ/TwAwBQSRw7dkx169ZVQECAhgwZojlz5sjd3d3RYQGo4Ej4AQAAACdGWU4AAADAiZHwAwAAAE6MhB8AAABwYk5fpScrK0unTp2Sv79/hXgkOgAAAFAajDG6dOmSwsLC5OaWfz++0yf8p06dUnh4uKPDAAAAAMrEyZMnVbt27XyXO33C7+/vLyn7RAQEBDg4GgAOk5UlnTyZPR8eLhXQEwIAQGWQlJSk8PBwW76bH6dP+HOG8QQEBJDwA64sJUVq0SJ7PjlZ8vV1bDwAAJSSGw1bp4sLAAAAcGIk/AAAAIATI+EHAAAAnJjTj+EHAACuyxijq1evKjMz09GhAEXm7u6uKlWqlLi0PAk/AABwShkZGUpISFBqaqqjQwGKzcfHR7Vq1ZKnp2ex90HCDwAAnE5WVpbi4+Pl7u6usLAweXp68gBOVCrGGGVkZOjMmTOKj49XVFRUgQ/XKggJPwDXUKWKNGrU7/MAnFpGRoaysrIUHh4uHx8fR4cDFIu3t7c8PDx0/PhxZWRkyMvLq1j74a8eANdgtUpvv+3oKACUs+L2iAIVRWlcw/wrAAAAAJwYPfwAXIMx0tmz2fM1akiM5QUAuAgSfgCuITVVCg7Onk9Olnx9HRsPAADlhIQfAAC4lPKu1mOMKdfjFVVGRkaJSj6i4mMMPwAAQAXz2WefqXnz5vL29lZQUJB69OihlJQUSdklR6dNm6YGDRrIarWqTp06ev311yVJ6enpeuqppxQcHCwvLy917NhRO3futNt3ly5dNGbMGI0bN041atRQz549JWV/MZk+fbrq1asnb29vtWzZUp999lmhYiqMrKwsTZ06VVFRUfLy8lJISIiGDRtW0lOFQqCHHwAAoAJJSEjQAw88oOnTp2vgwIG6dOmStmzZYvulYNKkSXrvvff097//XR07dlRCQoJ+/PFHSdLEiRP1+eefa9GiRYqIiND06dPVu3dvHTlyRNWrV7cdY9GiRfrzn/+s//73v7b9/vWvf9WyZcs0d+5cRUVFafPmzXrwwQdVs2ZNNWzYsMCYCiM6Oloff/yx5s+fr3r16unnn3+2xY2yZTEV/XemEkpKSlJgYKAuXryogIAAR4cDwFFSUiQ/v+x5xvADTi8tLU3x8fGqW7durtrlFX1Iz+7du9WmTRsdO3ZMERERdssuXbqkmjVras6cOXr00UftlqWkpKhatWpauHChhgwZIkm6cuWKIiMjNXbsWD377LOSsnv4L168qD179thtW6NGDa1fv17t2rWztT/66KNKTU3VhAkT8o2psO688061a9dO06ZNy7Xsm2++0d69e/XMM88Ua9/OrKBrubB5Lj38Liy///Cc/DsgAAAVWsuWLdW9e3c1b95cvXv3Vq9evTR48GBVq1ZNBw4cUHp6urp3755ru6NHj+rKlSvq0KGDrc3Dw0O33XabDhw4YLdu27Zt7V7v379faWlptuE9OTIyMnTLLbcUGFNh3XPPPXruuee0Z88eDRo0SH/84x9tvzr06NFDPXr0KPS+UDSM4QcAAKhA3N3dFRMTo1WrVqlJkyZ666231KhRI8XHx8vb2zvf7XI67K7v0DPG5Grzve5XzqysLEnSypUrFRsba5v279+vzz77rMCYCmvChAk6cOCAevToobfeeksNGjSwbd+nT59cX0pQekj4AbiGKlWk4cOzpyr8uAmgYrNYLOrQoYNeeeUV7dmzR56enlq+fLmioqLk7e2tdevW5dqmQYMG8vT01NatW21tV65c0a5du9S4ceMCj9ekSRNZrVadOHFCDRo0sJvCw8MLjKkoGjZsqIkTJ2r37t1KTU3V/v37JUmHDx9WVFRUkfaFwuOvHgDXYLVKCxc6OgoAuKFvv/1W69atU69evRQcHKxvv/1WZ86cUePGjeXl5aXnnntOEydOlKenpzp06KAzZ84oLi5OjzzyiP785z/r2WefVfXq1VWnTh1Nnz5dqampeuSRRwo8pr+/vyZMmKBnnnlGWVlZ6tixo5KSkrRt2zb5+fnp5ptvzjemwpg+fbpCQkJ06623yt3dXe+//76qVaum9u3b6+LFi/Lz81MVOmPKDGcWAACgAgkICNDmzZs1a9YsJSUlKSIiQm+++ab69OkjSXrxxRdVpUoVvfTSSzp16pRq1aqlJ554QpL0xhtvKCsrS8OGDdOlS5fUtm1brVmzplBj7V977TUFBwcrOjpaP/30k6pWrarWrVvr+eefv2FMCxcu1MMPP5zvfYBpaWmaOnWqTpw4IT8/P3Xo0EHr169XtWrV9N///ldNmzYtpbOHvFClx4Vx0y5cijHZT9uVJB8fqZyrdAAoXwVVNkHpmzx5sjZu3KiNGzcWedt58+bp/PnzmjRpUukH5gRKo0oPY/gBuIbU1OyynH5+vyf+AIBSsWbNGk2fPr1Y28bFxalZs2alHBGuxZCeckBPOgAAcGbbt28v9rb/+Mc/SjES5IUefgAAAMCJkfADAAAAToyEHwAAAHBiJPwAAACAEyPhBwAAAJwYVXoAuAZ3d2nw4N/nAQBwEST8AFyDl5f06aeOjgIAgHLHkB4AAADAiZHwAwAAAE6MhB+Aa0hJkSyW7CklxdHRAADyceHCBb3yyitKSEhwdChOgzH8AAAAqDCeeuopXbhwQXv27NGKFSscHY5ToIcfAAAAFcIXX3yh5ORkffXVV6patar+9a9/OTokp0DCDwAAgCLp0qWLxo4dm+/r4rrnnnu0fPlySdLChQs1dOjQEu8TJPwAAADIR36J/LJly/Taa6+Vf0A3sHnzZt19990KCwuTxWIp9JCgyZMny2Kx2E2hoaG51vvll1/04IMPKigoSD4+PmrVqpW+++472/J33nlHdevWlZeXl9q0aaMtW7aUSnwlRcIPAACAIqlevbr8/f0dHUYuKSkpatmypebMmVPkbZs2baqEhATbtHfvXrvlFy5cUIcOHeTh4aFVq1Zp//79evPNN1W1alVJ0ieffKKxY8fqhRde0J49e9SpUyf16dNHJ06cKJX4SoKEHwAAoIJJSUnRQw89JD8/P9WqVUtvvvmmXW97ZGSkZs2aZbdNq1atNHnyZNvr1atXq2PHjqpataqCgoJ011136ejRo3bbdOnSRU899ZQmTpyo6tWrKzQ01LaPESNGaNOmTZo9e7at1/vYsWO27QoawmOM0fTp01WvXj15e3urZcuW+uyzz274vn/88Ud17dpVXl5eatiwoVavXi03Nze7XvSC9OnTR1OmTNGgQYMKtf61qlSpotDQUNtUs2ZNu+XTpk1TeHi4FixYoNtuu02RkZHq3r276tevL0maOXOmHnnkET366KNq3LixZs2apfDwcM2dO7dU4isJEn4ArsHdXerbN3tyd3d0NABQoGeffVYbNmzQ8uXLtXbtWm3cuLHQSW+OlJQUjRs3Tjt37tS6devk5uamgQMHKisry269RYsWydfXV99++62mT5+uV199VTExMZo9e7batWunP/3pT7Ze7/Dw8EId+69//asWLFiguXPnKi4uTs8884wefPBBbdq0Kd9tDh48qNtuu01t27ZVXFycZsyYoYceekhubm5q2rSpFi5cKIvFUqRzUBSHDx9WWFiY6tatq/vvv18//fST3fIvvvhCbdu21R/+8AcFBwfrlltu0XvvvSdJysjI0HfffadevXrZbdOrVy9t27atzGIuLMpyAnANXl7SypWOjgJARVDQszjc3bP/vyjMum5ukrf3jdf19S1SeMnJyfrggw+0ePFi9ezZU1J2Ul67du0i7efee++1e/3BBx8oODhY+/fvV7NmzWztLVq00MsvvyxJioqK0pw5c7Ru3Tr17NlTnp6e8vHxyXM8e35SUlI0c+ZMrV+/Xu3atZMk1atXT1u3btW8efPUuXPnPLd76qmndO+992rGjBmSpPr162vJkiXat2+fvLy8FBgYqEaNGhXpHBTW7bffrsWLF6thw4b69ddfNWXKFLVv315xcXEKCgqSJP3000+aO3euxo0bp+eff17/+9//9NRTT8lqtapHjx7KzMxUSEiI3X5DQkJ0+vTpMom5KEj4AQCAa/Hzy39Z3772nQPBwVJqat7rdu4sbdz4++vISOns2dzrGVOk8I4ePaqMjAxbsixlj5kvarJ79OhRvfjii9qxY4fOnj1r69k/ceJEroT/WrVq1VJiYmKRjnWt/fv3Ky0tzfZlJUdGRoZuueWWPLc5efKk1q5dq++//96u3dPTUy1btpQkDRw4UAMHDix2XAXp06ePbb558+Zq166d6tevr0WLFmncuHGSpKysLLVt21ZTp06VJN1yyy2Ki4vT3Llz1aNHD0nK9QuEMaZMf5UoLBJ+AACACsQU4guCm5tbrvWuXLli9/ruu+9WeHi43nvvPYWFhSkrK0vNmjVTRkaG3XoeHh52ry0WS65hP0WRs+3KlSt100032S2zWq15brN79255eHioSZMmdu179+7VkCFDih1Lcfn6+qp58+Y6fPiwra1WrVq54mvcuLE+//xz1ahRQ+7u7rl68xMTE3P1+jsCCT8A15CSkt1TJ0mJiUX+iR2AE0lOzn/Z9ff4FNTT7XbdrZD/d0NrSTVo0EAeHh7asWOH6tSpIym7QsyhQ4dsw2Fq1qyphIQE2zZJSUmKj4+3vT537pwOHDigefPmqVOnTpKkrVu3FjkWT09PZWZmFmmbJk2ayGq16sSJE/kO37mem5ubMjMzdfXqVVWpkp2erlmzRt9//72mTZtW5LhLKj09XQcOHLCdO0nq0KGDDh48aLfeoUOHFBERIU9PT7Vp00YxMTF2v0LExMSof//+5RZ3fhx60+6Nap4aYzR58mSFhYXJ29tbXbp0UVxcnAMjBlCppabm/9M8ANfh65v/dO34/Rute+34/YLWLSI/Pz898sgjevbZZ7Vu3Trt27dPI0aMkNs1XzC6deumf/7zn9qyZYv27dun4cOHy/2aLyvVqlVTUFCQ5s+fryNHjmj9+vW2oSlFERkZqW+//VbHjh2zGxZUEH9/f02YMEHPPPOMFi1apKNHj2rPnj16++23tWjRojy3adOmjTw8PDRp0iT99NNP+vzzzzVq1ChJsg3pWb58uW6++eYCj52cnKzY2FjFxsZKkuLj4xUbG2tXGnPOnDnq3r273XYTJkzQpk2bFB8fr2+//VaDBw9WUlKShg8fblvnmWee0Y4dOzR16lQdOXJES5Ys0fz58zV69GhJ0rhx4/T+++/rww8/1IEDB/TMM8/oxIkTeuKJJ4oUX1lweA9/06ZN9c0339heX3uxTp8+XTNnztTChQvVsGFDTZkyRT179tTBgwcrZO1XAACA0jBjxgwlJyfrnnvukb+/v8aPH6+LFy/aluckxnfddZcCAwP12muv2fXwu7m5aenSpXrqqafUrFkzNWrUSP/4xz/UpUuXIsUxYcIEDR8+XE2aNNHly5cVHx+vyMjIG2732muvKTg4WNHR0frpp59UtWpVtW7dWs8//3ye64eFhen999/XpEmT9N5776lPnz564okn9Le//c3WGXzx4sVcPezX27Vrl7p27Wp7nfMlZ/jw4Vq4cKEk6ezZs7nKk/7888964IEHdPbsWdWsWVN33HGHduzYoYiICNs6t956q5YvX65Jkybp1VdfVd26dTVr1izb04Dvu+8+nTt3Tq+++qoSEhLUrFkzff3113b7KEx8ZcFiCjNQrIxMnjxZK1assH3LuZYxRmFhYRo7dqyee+45Sdk/r4SEhGjatGl6/PHHC3WMpKQkBQYG6uLFiwoICCjN8Astv5s1HHjqJVXcuIAykZLy+416yckM6QGcXFpamuLj421PPXUGXbp0UatWrXLV33dWEydO1Pfff681a9Y4OhSHKuhaLmye6/A6/PnVPI2Pj9fp06ft6plarVZ17ty5wHqm6enpSkpKspsAAABQufzwww+24TwoGYcm/Dk1T9esWaP33ntPp0+fVvv27XXu3DnbXc5FrWcaHR2twMBA21TYB0Q4q+vvkbh2AgAAqKj27t1Lwl9KHDqGv6Cap3fccYekotcznTRpkt1NKUlJSS6f9AMAgMpv47U1/13AL7/84ugQnIbDb9q91rU1TwcMGCBJOn36tGrVqmVb50b1TK1Wa741XgG4MDe37Ifk5MwDAOAiKtRfvZyap7Vq1VLdunUVGhqqmJgY2/KMjAxt2rRJ7du3d2CUAColb+/sJ2Ju3Ji7lB4AAE7MoT38EyZM0N133606deooMTFRU6ZMsdU8tVgsGjt2rKZOnaqoqChFRUVp6tSp8vHxccgT1wAAAIDKyKEJ/41qnk6cOFGXL1/WqFGjdOHCBd1+++1au3YtNfgBAACAQnJoHf7y4Op1+ItTjcfJLwm4qpQUKedhMceOUYcfcHLOWIcfrqk06vBXqJt2AaBMnT3r6AgAlLOsrCxHhwCUSGlcwyT8AADA6Xh6esrNzU2nTp1SzZo15enpyTNoUKkYY5SRkaEzZ87Izc1Nnp6exd4XCT8AAHA6bm5uqlu3rhISEnTq1ClHhwMUm4+Pj+rUqSO3EpSUJuEHAABOydPTU3Xq1NHVq1eVmZnp6HCAInN3d1eVKlVK/OsUCT8AAHBaFotFHh4e8vDwcHQogMNUqAdvAQAAAChd9PADcA1ublLbtr/PAwDgIkj4kQu1++GUvL2lnTsdHQUAAOWObi4AAADAiZHwAwAAAE6MhB+Aa0hNlSIjs6fUVEdHAwBAuWEMPwDXYIx0/Pjv8wAAuAh6+AEAAAAnRsIPAAAAODESfgAAAMCJkfADAAAAToyEHwAAAHBiVOkB4BosFqlJk9/nAQBwEST8AFyDj48UF+foKAAAKHcM6QEAAACcGD38TsJSQYco5BeX4cFHAAAA5YIefgCuITVVato0e0pNdXQ0AACUG3r4AbgGY6T9+3+fBwDARdDDDwAAADgxEn4AAADAiZHwAwAAAE6MhB8AAABwYty0W8lU1PKbAAAAqJhI+AG4BotFioj4fR4AABdBwg/ANfj4SMeOOToKAADKHWP4AQAAACdGwg8AAAA4MRJ+AK7h8mXp1luzp8uXHR0NAADlhjH8qHDyq0RkjCnnSOBUsrKkXbt+nwcAwEXQww8AAAA4MRJ+AAAAwImR8AMAAABOjIQfAAAAcGIk/AAAAIATo0oPANdRo4ajIwAAoNyR8ANwDb6+0pkzjo4CAIByx5AeAAAAwImR8AMAAABOjIQfgGu4fFnq0iV7unzZ0dEAAFBuGMMPwDVkZUmbNv0+DwCAi6CHHwAAAHBiJPwAAACAEyPhBwAAAJwYCT8AAADgxEj4AQAAACdGlR4ArsPHx9ERAABQ7kj4AbgGX18pJcXRUQAAUO4Y0gMAAAA4MXr4HchiseTZbowp50gAAADgrOjhB+Aa0tKkfv2yp7Q0R0cDAEC5oYcfgGvIzJS+/vr3eQAAXESF6eGPjo6WxWLR2LFjbW3GGE2ePFlhYWHy9vZWly5dFBcX57ggAQAAgEqmQiT8O3fu1Pz589WiRQu79unTp2vmzJmaM2eOdu7cqdDQUPXs2VOXLl1yUKQAAABA5eLwhD85OVlDhw7Ve++9p2rVqtnajTGaNWuWXnjhBQ0aNEjNmjXTokWLlJqaqiVLljgwYgAAAKDycHjCP3r0aPXr1089evSwa4+Pj9fp06fVq1cvW5vValXnzp21bdu2fPeXnp6upKQkuwkAAABwVQ69aXfp0qXavXu3du7cmWvZ6dOnJUkhISF27SEhITp+/Hi++4yOjtYrr7xSuoHihvIrMQoAAADHclgP/8mTJ/X000/ro48+kpeXV77rXZ9IGmMKTC4nTZqkixcv2qaTJ0+WWswAAABAZeOwHv7vvvtOiYmJatOmja0tMzNTmzdv1pw5c3Tw4EFJ2T39tWrVsq2TmJiYq9f/WlarVVartewCB1A5+fpKPNQOAOCCHNbD3717d+3du1exsbG2qW3btho6dKhiY2NVr149hYaGKiYmxrZNRkaGNm3apPbt2zsqbAAAAKBScVgPv7+/v5o1a2bX5uvrq6CgIFv72LFjNXXqVEVFRSkqKkpTp06Vj4+PhgwZ4oiQAQAAgEqnQj9pd+LEibp8+bJGjRqlCxcu6Pbbb9fatWvl7+/v6NAAVDZpadKwYdnz//ynVMC9QwAAOBOLMc49qDUpKUmBgYG6ePGiAgICHBJDUSvYFPSROEs1nOK8Rye/VFHWUlIkP7/s+eTk7DH9AABUYoXNcyt0Dz+cl7N8cQEAAKjoHP7gLQAAAABlh4QfAAAAcGIk/AAAAIATI+EHAAAAnBgJPwAAAODEqNIDwDX4+GSX48yZBwDARZDwA3ANFgu19wEALokhPQAAAIATI+EH4BrS06URI7Kn9HRHRwMAQLkh4QfgGq5elRYtyp6uXnV0NAAAlBsSfgAAAMCJkfADAAAAToyEHwAAAHBiJPwAAACAEyPhBwAAAJwYCT8AAADgxHjSLgDX4OMjJSb+Pg8AgIsg4QfgGiwWqWZNR0cBAEC5Y0gPAAAA4MRI+AG4hvR0afTo7Ck93dHRAABQbkj4AbiGq1eld97Jnq5edXQ0AACUGxJ+AAAAwImR8AMAAABOjIQfAAAAcGIk/AAAAIATow4/nJrFYsmz3RhTzpEAAAA4Bj38AAAAgBOjhx+Aa/D2luLjf58HAMBFkPADcA1ublJkpKOjAACg3DGkBwAAAHBiJPwAXENGhvTss9lTRoajowEAoNxYjJOXK0lKSlJgYKAuXryogIAAh8SQX6WY/BT0kRR1X86kOJcqVXpgk5Ii+fllzycnS76+jo0HAIASKmyeyxj+CsiVk3oAAACULob0AAAAAE6sWAl/fE5pOwAAAAAVWrES/gYNGqhr16766KOPlJaWVtoxAQAAACglxUr4v//+e91yyy0aP368QkND9fjjj+t///tfaccGAAAAoISKlfA3a9ZMM2fO1C+//KIFCxbo9OnT6tixo5o2baqZM2fqzJkzpR0nAAAAgGIolbKc6enpeueddzRp0iRlZGTIw8ND9913n6ZNm6ZatWqVRpzFVhnLciJvlOVEiWRlSQcOZM83bpz95F0AACqxwua5JfqLt2vXLo0aNUq1atXSzJkzNWHCBB09elTr16/XL7/8ov79+5dk94Adi8WS7wTckJub1LRp9kSyDwBwIcWqwz9z5kwtWLBABw8eVN++fbV48WL17dtXbv/3R7Ru3bqaN2+ebr755lINFgAAAEDRFCvhnzt3rkaOHKmHH35YoaGhea5Tp04dffDBByUKDgBKTUaGNHVq9vzzz0ueno6NBwCAclIqY/grMsbwu4b8LmPG8MMmJUXy88ueT06WfH0dGw8AACVUpmP4FyxYoE8//TRX+6effqpFixYVZ5cAAAAAykCxEv433nhDNWrUyNUeHBysqTk/mQMAAABwuGKN4T9+/Ljq1q2bqz0iIkInTpwocVBAWStomBXDfQAAgDMpVg9/cHCwfvjhh1zt33//vYKCgkocFAAAAIDSUayE//7779dTTz2lDRs2KDMzU5mZmVq/fr2efvpp3X///aUdIwAAAIBiKtaQnilTpuj48ePq3r27qlTJ3kVWVpYeeughxvADAAAAFUiJynIeOnRI33//vby9vdW8eXNFRESUZmylgrKcrqGoZTmLsy9UcpmZ0u7d2fOtW0vu7o6NBwCAEipsnlusHv4cDRs2VMOGDUuyCwAoH+7u0q23OjoKAADKXbES/szMTC1cuFDr1q1TYmKisrKy7JavX7++VIIDAAAAUDLFSviffvppLVy4UP369VOzZs0YsgKg4svIkGbPzp5/+mnJ09Ox8QAAUE6KNYa/Ro0aWrx4sfr27VsWMZUqxvC7Bsbw44ZSUiQ/v+z55GTJ19ex8QAAUEKFzXOLVZbT09NTDRo0KHZwAAAAAMpHsRL+8ePHa/bs2SXuCZ07d65atGihgIAABQQEqF27dlq1apVtuTFGkydPVlhYmLy9vdWlSxfFxcWV6JgAAACAKynWGP6tW7dqw4YNWrVqlZo2bSoPDw+75cuWLSvUfmrXrq033njD9mvBokWL1L9/f+3Zs0dNmzbV9OnTNXPmTC1cuFANGzbUlClT1LNnTx08eFD+/v7FCR0AAABwKcUaw//www8XuHzBggXFDqh69eqaMWOGRo4cqbCwMI0dO1bPPfecJCk9PV0hISGaNm2aHn/88ULtjzH8roEx/LghxvADAJxMmdbhL0lCn5/MzEx9+umnSklJUbt27RQfH6/Tp0+rV69etnWsVqs6d+6sbdu25Zvwp6enKz093fY6KSmp1GMFAAAAKotijeGXpKtXr+qbb77RvHnzdOnSJUnSqVOnlJycXKT97N27V35+frJarXriiSe0fPlyNWnSRKdPn5YkhYSE2K0fEhJiW5aX6OhoBQYG2qbw8PAivjMAAADAeRSrh//48eP6f//v/+nEiRNKT09Xz5495e/vr+nTpystLU3vvvtuoffVqFEjxcbG6rffftPnn3+u4cOHa9OmTbbl1w/JMMYUOExj0qRJGjdunO11UlISST8AyctL2rDh93kAAFxEsR+81bZtW33//fcKCgqytQ8cOFCPPvpokfZ1bYnPtm3baufOnZo9e7Zt3P7p06dVq1Yt2/qJiYm5ev2vZbVaZbVaixQDABfg7i516eLoKAAAKHfFGtKzdetW/fWvf5XndU+qjIiI0C+//FKigIwxSk9PV926dRUaGqqYmBjbsoyMDG3atEnt27cv0TEAAAAAV1GsHv6srCxlZmbmav/555+LVC7z+eefV58+fRQeHq5Lly5p6dKl2rhxo1avXi2LxaKxY8dq6tSpioqKUlRUlKZOnSofHx8NGTKkOGEDcGVXrkjz52fPP/aYdF05YQAAnFWxEv6ePXtq1qxZmv9/fzwtFouSk5P18ssvq2/fvoXez6+//qphw4YpISFBgYGBatGihVavXq2ePXtKkiZOnKjLly9r1KhRunDhgm6//XatXbuWGvwAii4jQxozJnt+xAgSfgCAyyhWHf5Tp06pa9eucnd31+HDh9W2bVsdPnxYNWrU0ObNmxUcHFwWsRYLdfhdQ3nU4c9vX9TtrySoww8AcDJlWoc/LCxMsbGx+vjjj7V7925lZWXpkUce0dChQ+Xt7V3soAEAAACUrmL18Fcm9PC7Bnr4cUP08AMAnEyZ9vAvXry4wOUPPfRQcXYLAAAAoJQVq4e/WrVqdq+vXLmi1NRUeXp6ysfHR+fPny+1AEuKHn7XQA8/bogefgCAkylsnlusOvwXLlywm5KTk3Xw4EF17NhRH3/8cbGDBgAAAFC6ijWkJy9RUVF644039OCDD+rHH38srd0CQOmwWqWvvvp9HgAAF1FqCb8kubu769SpU6W5SwAoHVWqSP36OToKAADKXbES/i+++MLutTFGCQkJmjNnjjp06FAqgQEAAAAouWIl/AMGDLB7bbFYVLNmTXXr1k1vvvlmacQFAKXryhXpX//Knh86lCftAgBcRrES/qysrNKOAwDKVkaG9PDD2fN/+AMJPwDAZRSrSg8AAACAyqFYPfzjxo0r9LozZ84sziEAAAAAlIJiJfx79uzR7t27dfXqVTVq1EiSdOjQIbm7u6t169a29XjgFAAAAOBYxUr47777bvn7+2vRokW2p+5euHBBDz/8sDp16qTx48eXapAAAAAAisdijDFF3eimm27S2rVr1bRpU7v2ffv2qVevXhWqFn9hHzlclvilo+zldxkX59wXdV/F+CcER0hJkfz8sueTkyVfX8fGAwBACRU2zy3WTbtJSUn69ddfc7UnJibq0qVLxdklAAAAgDJQrCE9AwcO1MMPP6w333xTd9xxhyRpx44devbZZzVo0KBSDRAASoXVKv3737/PAwDgIoo1pCc1NVUTJkzQhx9+qCtXrkiSqlSpokceeUQzZsyQbwX6qZwhPa6BIT0AAMDVFDbPLVbCnyMlJUVHjx6VMUYNGjSoUIl+DhJ+10DCDwAAXE2ZjuHPkZCQoISEBDVs2FC+vr4kPnAYi8WS5wTYXL0qffpp9nT1qqOjAQCg3BRrDP+5c+f0xz/+URs2bJDFYtHhw4dVr149Pfroo6patarefPPN0o4TAEomPV364x+z55OTpSrF+u8PAIBKp1g9/M8884w8PDx04sQJ+fj42Nrvu+8+rV69utSCAwAAAFAyxeriWrt2rdasWaPatWvbtUdFRen48eOlEhgAAACAkitWD39KSopdz36Os2fPykq5OwAAAKDCKFbCf+edd2rx4sW21xaLRVlZWZoxY4a6du1aasEBAAAAKJliDemZMWOGunTpol27dikjI0MTJ05UXFyczp8/r//+97+lHSMAAACAYipWD3+TJk30ww8/6LbbblPPnj2VkpKiQYMGac+ePapfv35pxwiUK0p8AgAAZ1LkHv4rV66oV69emjdvnl555ZWyiAkASp+np7Rgwe/zAAC4iCIn/B4eHtq3bx89ngAqFw8PacQIR0cBAEC5K9aQnoceekgffPBBaccCAAAAoJQV66bdjIwMvf/++4qJiVHbtm3l6+trt3zmzJmlEhwAlJqrV6U1a7Lne/fmSbsAAJdRpL94P/30kyIjI7Vv3z61bt1aknTo0CG7dRjqA6BCSk+X7rorez45mYQfAOAyivQXLyoqSgkJCdqwYYMk6b777tM//vEPhYSElElwAAAAAEqmSGP4jTF2r1etWqWUlJRSDQgAAABA6SnWTbs5rv8CAAAAAKBiKVLCn9cDiBizDwAAAFRcRRrDb4zRiBEjZLVaJUlpaWl64oknclXpWbZsWelFCAAAAKDYipTwDx8+3O71gw8+WKrBAAAAAChdRUr4F+Q8lh4AKhtPT2nOnN/nAQBwERSiBuAaPDyk0aMdHQUAAOWuRFV6AAAAAFRs9PADcA2ZmdKWLdnznTpJ7u6OjQcAgHJCwg/ANaSlSV27Zs8nJ0vXVRcDAMBZMaQHAAAAcGIk/AAAAIATI+EHAAAAnBgJPwAAAODESPgBAAAAJ0bCDwAAADgxynICcA0eHtL06b/PAwDgIkj4AbgGT0/p2WcdHQUAAOWOIT0AAACAE6OHH4BryMyUdu/Onm/dWnJ3d2w8AACUExJ+oIQsFku+y4wx5RgJCpSWJt12W/Z8crLk6+vYeAAAKCcM6QEAAACcGAk/AAAA4MQcmvBHR0fr1ltvlb+/v4KDgzVgwAAdPHjQbh1jjCZPnqywsDB5e3urS5cuiouLc1DEAAAAQOXi0IR/06ZNGj16tHbs2KGYmBhdvXpVvXr1UkpKim2d6dOna+bMmZozZ4527typ0NBQ9ezZU5cuXXJg5AAAAEDlYDEV6K7CM2fOKDg4WJs2bdKdd94pY4zCwsI0duxYPffcc5Kk9PR0hYSEaNq0aXr88cdz7SM9PV3p6em210lJSQoPD9fFixcVEBBQbu/lWgXd1AnnVoH+eSElRfLzy57npl0AgBNISkpSYGDgDfPcCjWG/+LFi5Kk6tWrS5Li4+N1+vRp9erVy7aO1WpV586dtW3btjz3ER0drcDAQNsUHh5e9oEDTsJiseQ5AQCAyqvCJPzGGI0bN04dO3ZUs2bNJEmnT5+WJIWEhNitGxISYlt2vUmTJunixYu26eTJk2UbOIDKwcNDevnl7MnDw9HRAABQbipMHf4xY8bohx9+0NatW3Mtu76H0RiTb6+j1WqV1WotkxgBVGKentLkyY6OAgCAclcheviffPJJffHFF9qwYYNq165taw8NDZWkXL35iYmJuXr9AQAAAOTm0ITfGKMxY8Zo2bJlWr9+verWrWu3vG7dugoNDVVMTIytLSMjQ5s2bVL79u3LO1wAlVlWlhQXlz1lZTk6GgAAyo1Dh/SMHj1aS5Ys0X/+8x/5+/vbevIDAwPl7e0ti8WisWPHaurUqYqKilJUVJSmTp0qHx8fDRkyxJGhA6hsLl+W/u/+IKr0AABciUMT/rlz50qSunTpYte+YMECjRgxQpI0ceJEXb58WaNGjdKFCxd0++23a+3atfL39y/naAEAAIDKp0LV4S8Lha1PWpYoa4jrVdR/dvldqxU13iKhDj8AwMlUyjr8AAAAAEoXCT8AAADgxEj4AQAAACdGwg8AAAA4sQrzpF0AKFMeHtKECb/PAwDgIkj4AbgGT09pxgxHRwEAQLljSA8AAADgxOjhB+AasrKkEyey5+vUkdzo7wAAuAYSfgCu4fJlqW7d7HkevAUAcCF0cQEAAABOjIQfAAAAcGIk/AAAAIATI+EHAAAAnBgJPwAAAODESPgBAAAAJ0ZZTgCuoUoVadSo3+cBAHAR/NUD4BqsVunttx0dBQAA5Y4hPQAAAIATo4cfgGswRjp7Nnu+Rg3JYnFsPAAAlBMSfqCSsOSToBpjHHbs8jp+qUhNlYKDs+eTkyVfX8fGAwBAOWFIDwAAAODESPgBAAAAJ0bCDwAAADgxEn4AAADAiZHwAwAAAE6MhB8AAABwYpTlBOAaqlSRhg//fR4AABfBXz0ArsFqlRYudHQUAACUO4b0AAAAAE6MHn4ArsGY7KftSpKPj1TA04MBAHAm9PADcA2pqZKfX/aUk/gDAOACSPgBAAAAJ0bCDwAAADgxEn4AAADAiZHwAwAAAE6MhB8AAABwYiT8AAAAgBOjDj8A1+DuLg0e/Ps8AAAugoQfgGvw8pI+/dTRUQAAUO4Y0gMAAAA4MRJ+AAAAwImR8ANwDSkpksWSPaWkODoaAADKDQk/AAAA4MRI+AEAAAAnRsIPAAAAODESfgAAAMCJUYcfqEAsFoujQwAAAE6GHn4AAADAidHDD8A1uLtLffv+Pg8AgIsg4QfgGry8pJUrHR0FAADljiE9AAAAgBMj4QcAAACcGAk/UMlZLJY8J1wnJUXy9c2eUlIcHQ0AAOWGMfwAXEdqqqMjAACg3NHDDwAAADgxhyb8mzdv1t13362wsDBZLBatWLHCbrkxRpMnT1ZYWJi8vb3VpUsXxcXFOSZYAAAAoBJyaMKfkpKili1bas6cOXkunz59umbOnKk5c+Zo586dCg0NVc+ePXXp0qVyjhQAAAConBw6hr9Pnz7q06dPnsuMMZo1a5ZeeOEFDRo0SJK0aNEihYSEaMmSJXr88cfLM1QAAACgUqqwY/jj4+N1+vRp9erVy9ZmtVrVuXNnbdu2Ld/t0tPTlZSUZDcBAAAArqrCJvynT5+WJIWEhNi1h4SE2JblJTo6WoGBgbYpPDy8TOMEisPRpTQdfXyHcHOTOnfOntwq7H99AACUugr/V+/6JMQYU2BiMmnSJF28eNE2nTx5sqxDBFAZeHtLGzdmT97ejo4GAIByU2Hr8IeGhkrK7umvVauWrT0xMTFXr/+1rFarrFZrmccHAAAAVAYVtoe/bt26Cg0NVUxMjK0tIyNDmzZtUvv27R0YGQAAAFB5OLSHPzk5WUeOHLG9jo+PV2xsrKpXr646depo7Nixmjp1qqKiohQVFaWpU6fKx8dHQ4YMcWDUACqllBQpMjJ7/tgxydfXkdEAAFBuHJrw79q1S127drW9HjdunCRp+PDhWrhwoSZOnKjLly9r1KhRunDhgm6//XatXbtW/v7+jgoZQGV29qyjIwAAoNxZjDHG0UGUpaSkJAUGBurixYsKCAhwSAxOX/0EFVJB/7RL85qsNP+FpKRIfn7Z88nJ9PADACq9wua5FfamXQCVQ1G/PFSaLwgAADiJCnvTLgAAAICSI+EHAAAAnBgJPwAAAODEGMMPwDW4uUlt2/4+DwCAiyDhB+AavL2lnTsdHQUAAOWOhB9wUpSDzVt+54XqQQAAZ8Xv2gAAAIATI+EH4BpSU6XISMVL8nZ0LAAAlCMSfgCuwRjp+HFFSmKwEwDAlZDwAwAAAE6MhB8AAABwYiT8AAAAgBOjLCeAclVQuVBKYwIAUPro4QcAAACcGAk/ANdgsUhNmihOEr8jAABcCUN6ALgGHx8pLk7NeAIxAMDF0MMPAAAAODESfgAAAMCJkfADcA2pqVLTptonydvRsQAAUI5I+AG4BmOk/fvVVBKj+AEAroSEHwAAAHBiJPwAAACAEyPhBwAAAJwYCT8AAADgxEj4AQAAACdGwg+gwrBYLHlOpbRzKSJCxySZ0tljMcMow/cIAEAeqjg6AAAoFz4+0rFjqktyDQBwMfTwAwAAAE6MhB8AAABwYiT8AFzD5cvSrbfqf5K8HB0LAADliIQfgGvIypJ27dKt4j8+AIBr4e8eAAAA4MSo0gPAKV1f6tJHUkoR1r+WMXkX8qScJgCgMqCHHwAAAHBiJPwAAACAEyPhBwAAAJwYY/gBuIwzjg4AAAAHIOEH4BJSJQU7OggAAByAIT0AAACAE6OHH0ClVV5lMStq+c384sqvjGhl5ArvEQDKGj38AFyCl6QN/zd5OTgWAADKEz38AFyCm6Qu18wDAOAq+LsHAAAAODESfgAAAMCJkfADAAAATowx/ABQgRWnQlBpVrYpzvGpoAMAFQs9/AAAAIATo4cfgMtIcXQAAAA4AAk/AJeQKsnP0UEAAOAADOkBAAAAnBgJPwAAAODESPgBuASrpK/+b7I6OBYAAMoTY/gBVHjFKQ15PXdJ/a6Zd0WlcR4ruoLeI+VC81bU66K8zmNplpcFSqqy/99CDz8AAADgxEj4AQAAACdWKRL+d955R3Xr1pWXl5fatGmjLVu2ODokAAAAoFKo8An/J598orFjx+qFF17Qnj171KlTJ/Xp00cnTpxwdGgAAABAhWcxFfxOg9tvv12tW7fW3LlzbW2NGzfWgAEDFB0dfcPtk5KSFBgYqIsXLyogIKAsQ82XK9woB1R0Pvr9Sbu+yn4QV0WS33/FlfH/j9L8s1LUGzcr+411jsBNu8CNVdT/Wwqb51boKj0ZGRn67rvv9Je//MWuvVevXtq2bVue26Snpys9Pd32+uLFi5KyTwgA12UkJV0zX9E40/9R5fFeinMMZzrHjuTo8+jo4wPXc+Q1mXPsG33pqNAJ/9mzZ5WZmamQkBC79pCQEJ0+fTrPbaKjo/XKK6/kag8PDy+TGAFUDpclBTo6iAIEBlbk6IqmPN5LcY7hTOfYkRx9Hh19fOB6FeGavHTpUoFxVOiEP8f1P6MYY/L9aWXSpEkaN26c7XVWVpbOnz+voKAgh/w0npSUpPDwcJ08edJhQ4pQ+XEdobRwLaE0cB2hNHAdlZwxRpcuXVJYWFiB61XohL9GjRpyd3fP1ZufmJiYq9c/h9VqldVq/xzNqlWrllWIhRYQEMDFjBLjOkJp4VpCaeA6QmngOiqZwvzCUKGr9Hh6eqpNmzaKiYmxa4+JiVH79u0dFBUAAABQeVToHn5JGjdunIYNG6a2bduqXbt2mj9/vk6cOKEnnnjC0aEBAAAAFV6FT/jvu+8+nTt3Tq+++qoSEhLUrFkzff3114qIiHB0aIVitVr18ssv5xpmBBQF1xFKC9cSSgPXEUoD11H5qfB1+AEAAAAUX4Ueww8AAACgZEj4AQAAACdGwg8AAAA4MRJ+AAAAwImR8Jehd955R3Xr1pWXl5fatGmjLVu2ODokVDKbN2/W3XffrbCwMFksFq1YscLRIaESio6O1q233ip/f38FBwdrwIABOnjwoKPDQiU0d+5ctWjRwvagpHbt2mnVqlWODguVXHR0tCwWi8aOHevoUJwWCX8Z+eSTTzR27Fi98MIL2rNnjzp16qQ+ffroxIkTjg4NlUhKSopatmypOXPmODoUVGKbNm3S6NGjtWPHDsXExOjq1avq1auXUlJSHB0aKpnatWvrjTfe0K5du7Rr1y5169ZN/fv3V1xcnKNDQyW1c+dOzZ8/Xy1atHB0KE6Nspxl5Pbbb1fr1q01d+5cW1vjxo01YMAARUdHOzAyVFYWi0XLly/XgAEDHB0KKrkzZ84oODhYmzZt0p133unocFDJVa9eXTNmzNAjjzzi6FBQySQnJ6t169Z65513NGXKFLVq1UqzZs1ydFhOiR7+MpCRkaHvvvtOvXr1smvv1auXtm3b5qCoACDbxYsXJWUnakBxZWZmaunSpUpJSVG7du0cHQ4qodGjR6tfv37q0aOHo0NxehX+SbuV0dmzZ5WZmamQkBC79pCQEJ0+fdpBUQGAZIzRuHHj1LFjRzVr1szR4aAS2rt3r9q1a6e0tDT5+flp+fLlatKkiaPDQiWzdOlS7d69Wzt37nR0KC6BhL8MWSwWu9fGmFxtAFCexowZox9++EFbt251dCiopBo1aqTY2Fj99ttv+vzzzzV8+HBt2rSJpB+FdvLkST399NNau3atvLy8HB2OSyDhLwM1atSQu7t7rt78xMTEXL3+AFBennzySX3xxRfavHmzateu7ehwUEl5enqqQYMGkqS2bdtq586dmj17tubNm+fgyFBZfPfdd0pMTFSbNm1sbZmZmdq8ebPmzJmj9PR0ubu7OzBC58MY/jLg6empNm3aKCYmxq49JiZG7du3d1BUAFyVMUZjxozRsmXLtH79etWtW9fRIcGJGGOUnp7u6DBQiXTv3l179+5VbGysbWrbtq2GDh2q2NhYkv0yQA9/GRk3bpyGDRumtm3bql27dpo/f75OnDihJ554wtGhoRJJTk7WkSNHbK/j4+MVGxur6tWrq06dOg6MDJXJ6NGjtWTJEv3nP/+Rv7+/7dfHwMBAeXt7Ozg6VCbPP/+8+vTpo/DwcF26dElLly7Vxo0btXr1akeHhkrE398/1z1Evr6+CgoK4t6iMkLCX0buu+8+nTt3Tq+++qoSEhLUrFkzff3114qIiHB0aKhEdu3apa5du9pejxs3TpI0fPhwLVy40EFRobLJKQ/cpUsXu/YFCxZoxIgR5R8QKq1ff/1Vw4YNU0JCggIDA9WiRQutXr1aPXv2dHRoAApAHX4AAADAiTGGHwAAAHBiJPwAAACAEyPhBwAAAJwYCT8AAADgxEj4AQAAACdGwg8AAAA4MRJ+AAAAwImR8AMAAABOjIQfAKAVK1aoQYMGcnd319ixY8v9+JGRkZo1a1a5HxcAXAEJPwAUYMSIEbJYLHrjjTfs2lesWCGLxeKgqErf448/rsGDB+vkyZN67bXXyv34O3fu1GOPPWZ7bbFYtGLFinKPAwCcEQk/ANyAl5eXpk2bpgsXLjg6lDKRnJysxMRE9e7dW2FhYfL39y/WfjIyMoodQ82aNeXj41Ps7SuCkrx/AChLJPwAcAM9evRQaGiooqOjC1zv888/V9OmTWW1WhUZGak333zTbnlkZKSmTp2qkSNHyt/fX3Xq1NH8+fNvePy4uDj169dPAQEB8vf3V6dOnXT06FFJUlZWll599VXVrl1bVqtVrVq10urVq23bHjt2TBaLRcuWLVPXrl3l4+Ojli1bavv27ZKkjRs32hL8bt26yWKxaOPGjYV+P1OmTNGIESMUGBioP/3pT1q4cKGqVq2qr776So0aNZKPj48GDx6slJQULVq0SJGRkapWrZqefPJJZWZm2u0rZ0hPZGSkJGngwIGyWCyKjIzUsWPH5Obmpl27dtnF8NZbbykiIkLGmDzP3TvvvKOoqCh5eXkpJCREgwcPti3LysrStGnT1KBBA1mtVtWpU0evv/66bfnevXvVrVs3eXt7KygoSI899piSk5Nty0eMGKEBAwYoOjpaYWFhatiwoSTpl19+0X333adq1aopKChI/fv317Fjx2zbbdy4Ubfddpt8fX1VtWpVdejQQcePH8/7wweA0mAAAPkaPny46d+/v1m2bJnx8vIyJ0+eNMYYs3z5cnPtf6G7du0ybm5u5tVXXzUHDx40CxYsMN7e3mbBggW2dSIiIkz16tXN22+/bQ4fPmyio6ONm5ubOXDgQL7H//nnn0316tXNoEGDzM6dO83BgwfNhx9+aH788UdjjDEzZ840AQEB5uOPPzY//vijmThxovHw8DCHDh0yxhgTHx9vJJmbb77ZfPXVV+bgwYNm8ODBJiIiwly5csWkp6ebgwcPGknm888/NwkJCSY9Pb3Q7ycgIMDMmDHDHD582Bw+fNgsWLDAeHh4mJ49e5rdu3ebTZs2maCgINOrVy/zxz/+0cTFxZkvv/zSeHp6mqVLl9rt6+9//7sxxpjExEQjySxYsMAkJCSYxMREY4wxPXv2NKNGjbI7P7fccot56aWX8jx3O3fuNO7u7mbJkiXm2LFjZvfu3Wb27Nm25RMnTjTVqlUzCxcuNEeOHDFbtmwx7733njHGmJSUFBMWFmYGDRpk9u7da9atW2fq1q1rhg8fbndt+Pn5mWHDhpl9+/aZvXv3mpSUFBMVFWVGjhxpfvjhB7N//34zZMgQ06hRI5Oenm6uXLliAgMDzYQJE8yRI0fM/v37zcKFC83x48fzvQYAoKRI+AGgADkJvzHG3HHHHWbkyJHGmNwJ/5AhQ0zPnj3ttn322WdNkyZNbK8jIiLMgw8+aHudlZVlgoODzdy5c/M9/qRJk0zdunVNRkZGnsvDwsLM66+/btd266232hLjnIT//fffty2Pi4szkmxfNC5cuGAkmQ0bNhT5/QwYMMBunQULFhhJ5siRI7a2xx9/3Pj4+JhLly7Z2nr37m0ef/xxu33lJPzGGCPJLF++3G7fn3zyialWrZpJS0szxhgTGxtrLBaLiY+Pz/PcfP755yYgIMAkJSXlWpaUlGSsVqstwb/e/PnzTbVq1UxycrKtbeXKlcbNzc2cPn3aGJN9bYSEhJj09HTbOh988IFp1KiRycrKsrWlp6cbb29vs2bNGnPu3DkjyWzcuDHP4wJAWWBIDwAU0rRp07Ro0SLt378/17IDBw6oQ4cOdm0dOnTQ4cOH7YautGjRwjZvsVgUGhqqxMRESVKfPn3k5+cnPz8/NW3aVJIUGxurTp06ycPDI9cxk5KSdOrUqTyPe+DAAbu2a49bq1YtSbIdNy+FfT9t27bNta2Pj4/q169vex0SEqLIyEj5+fnZtRV0/LwMGDBAVapU0fLlyyVJH374obp27WobAnS9nj17KiIiQvXq1dOwYcP0r3/9S6mpqbb3l56eru7du+e57YEDB9SyZUv5+vra2jp06KCsrCwdPHjQ1ta8eXN5enraXn/33Xc6cuSI/P39bZ9l9erVlZaWpqNHj6p69eoaMWKEevfurbvvvluzZ89WQkJCkc4DABQVCT8AFNKdd96p3r176/nnn8+1zBiTq2qPyWNc+fWJu8ViUVZWliTp/fffV2xsrGJjY/X1119Lkry9vW8YV17Hvb7t2uPmLMs5bl4K+36uTYjzOlbO8Qp634Xl6empYcOGacGCBcrIyNCSJUs0cuTIfNf39/fX7t279fHHH6tWrVp66aWX1LJlS/322283PK95vf9rY89x/fvPyspSmzZtbJ9jznTo0CENGTJEkrRgwQJt375d7du31yeffKKGDRtqx44dhT0NAFBkJPwAUARvvPGGvvzyS23bts2uvUmTJtq6datd27Zt29SwYUO5u7sXat833XSTGjRooAYNGigiIkJSds/8li1bdOXKlVzrBwQEKCwsLM/jNm7cuChvK5fSeD8l4eHhYfdLQo5HH31U33zzjd555x1duXJFgwYNKnA/VapUUY8ePTR9+nT98MMPOnbsmNavX6+oqCh5e3tr3bp1eW7XpEkTxcbGKiUlxdb23//+V25ubrabc/PSunVrHT58WMHBwbbPMmcKDAy0rXfLLbdo0qRJ2rZtm5o1a6YlS5bc6JQAQLGR8ANAETRv3lxDhw7VW2+9Zdc+fvx4rVu3Tq+99poOHTqkRYsWac6cOZowYUKJjjdmzBglJSXp/vvv165du3T48GH985//tA0refbZZzVt2jR98sknOnjwoP7yl78oNjZWTz/9dImOW1bvp7AiIyO1bt06nT592q4cauPGjXXHHXfoueee0wMPPFBgT/1XX32lf/zjH4qNjdXx48e1ePFiZWVlqVGjRvLy8tJzzz2niRMnavHixTp69Kh27NihDz74QJI0dOhQeXl5afjw4dq3b582bNigJ598UsOGDVNISEi+xxw6dKhq1Kih/v37a8uWLYqPj9emTZv09NNP6+eff1Z8fLwmTZqk7du36/jx41q7dq0OHTpU4i9oAFAQEn4AKKLXXnst1/CW1q1b69///reWLl2qZs2a6aWXXtKrr76qESNGlOhYQUFBWr9+vZKTk9W5c2e1adNG7733nm2IzFNPPaXx48dr/Pjxat68uVavXq0vvvhCUVFRJTpuWb2fwnrzzTcVExOj8PBw3XLLLXbLHnnkEWVkZBQ4nEeSqlatqmXLlqlbt25q3Lix3n33XX388ce2+yNefPFFjR8/Xi+99JIaN26s++67z3ZfgY+Pj9asWaPz58/r1ltv1eDBg9W9e3fNmTOnwGP6+Pho8+bNqlOnjgYNGqTGjRtr5MiRunz5sgICAuTj46Mff/xR9957rxo2bKjHHntMY8aM0eOPP16CswUABbOYvAZlAgBQQb3++utaunSp9u7d6+hQAKBSoIcfAFApJCcna+fOnXrrrbf01FNPOTocAKg0SPgBAJXCmDFj1LFjR3Xu3PmGw3kAAL9jSA8AAADgxOjhBwAAAJwYCT8AAADgxEj4AQAAACdGwg8AAAA4MRJ+AAAAwImR8AMAAABOjIQfAAAAcGIk/AAAAIAT+//hnZjXEA976AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Size\n", "fig, ax = plt.subplots(figsize=(9,5))\n", "\n", "# Plot\n", "plt.hist(scores, bins=100, color='black', alpha=1, label='scores, ${s_i}$')\n", "plt.axvline(x=qhat, color='red', linestyle='--', label=f'quantile $\\hat{{q}}$: {qhat:.4f}')\n", "plt.xlabel('Non-conformity scores')\n", "plt.ylabel('Frequency')\n", "plt.title('Distribution of Non-conformity Scores')\n", "plt.legend(loc='upper right')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "c84b02d1", "metadata": {}, "source": [ "### Coverage Probability " ] }, { "cell_type": "code", "execution_count": 114, "id": "fc59ec9a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coverage: 0.97\n", "Avg. interval width: 3.1\n" ] } ], "source": [ "# Prediction intervals\n", "lower_bounds = []\n", "upper_bounds = []\n", "\n", "for i in range(len(X_new)):\n", " pred = model.predict(X_new[i:i+1])[0]\n", " lower = pred - qhat # or another formula based on residuals and qhat\n", " upper = pred + qhat # similarly adjust as necessary\n", " lower_bounds.append(lower)\n", " upper_bounds.append(upper)\n", "\n", "# Coverage probability\n", "matches = [(true_val >= lower) and (true_val <= upper) \n", " for true_val, lower, upper in zip(y_new, lower_bounds, upper_bounds)]\n", "coverage = np.mean(matches)\n", "\n", "# Average interval width\n", "avg_interval_width = np.mean([upper - lower for lower, upper in zip(lower_bounds, upper_bounds)])\n", "\n", "# Print the results\n", "print(f'Coverage: {coverage:.2f}')\n", "print(f'Avg. interval width: {avg_interval_width:.1f}')" ] }, { "cell_type": "markdown", "id": "1cf5911b", "metadata": {}, "source": [ "### Plot" ] }, { "cell_type": "code", "execution_count": 115, "id": "837676c7", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvMAAAHUCAYAAAC3RKfEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADflUlEQVR4nOydeZwcZZ3/Pz3d0z3Tc0+SyeROSAIkEG4BIRqiyM2CKHggILDorgcei+vCCgbUwHot7nrsegEqIrAoKvw4lSCRWxDQcISQi5wzmczdd9fvjy/f6ZqaOp6qrqrunnzfr9e8IH3VU1VPPc/n+T7fI6JpmgZBEARBEARBEGqOuko3QBAEQRAEQRAEb4iYFwRBEARBEIQaRcS8IAiCIAiCINQoIuYFQRAEQRAEoUYRMS8IgiAIgiAINYqIeUEQBEEQBEGoUUTMC4IgCIIgCEKNImJeEARBEARBEGoUEfOCIAiCIAiCUKOImBcEoSa5+eabEYlExv5isRhmz56Niy++GNu2bQulDfPnz8dHP/rRsX+vWbMGkUgEa9ascfU7jz/+OFatWoX+/n5f2wcAH/3oRzF//nzbz5xxxhloaWlBPp8f9/rzzz+PSCSCGTNmTPjOY489hkgkgv/6r/9SPk6QjIyM4IYbbsDhhx+O5uZmNDc34/DDD8d//Md/IJVKBX78TZs2IRKJ4Oabbx57jfvopk2bxl775S9/iRtvvDHw9giCsO8gYl4QhJrmpptuwhNPPIGHHnoIl112GW677Ta84x3vwMjISOhtOeKII/DEE0/giCOOcPW9xx9/HNdee20gYl6FlStXYnh4GM8+++y419esWYOmpibs3LkTr7zyyoT3+LsAcPXVV+M3v/lNKO01smvXLhx77LG47rrrcPLJJ+M3v/kNfvOb3+CUU07Btddei+OPPx69vb2ht+v000/HE088MW4xJGJeEAS/iVW6AYIgCOVw8MEH46ijjgJAwrJQKOArX/kK7r77bpx//vmm3xkdHUUymfS9La2trTj22GN9/92gYUG+Zs2ace1fs2YNzjrrLDzyyCN45JFHcOCBB457b+rUqTj44IMBAAsXLgy30TouvPBCvPLKK3jkkUewfPnysdff85734PTTT8fKlStx6aWX4re//W2o7Zo2bRqmTZsW6jEFQdj3EMu8IAiTChajmzdvBkDuH83NzXjppZdw0kknoaWlBe9+97sBANlsFl/96ldx4IEHIpFIYNq0abj44ovR09Mz7jdzuRz+9V//Fd3d3Ugmk1i+fDmefvrpCce2crN56qmncOaZZ2LKlCloaGjAwoUL8dnPfhYAsGrVKnzhC18AACxYsGDMbUj/G7fffjve/va3o6mpCc3NzTj55JPx/PPPTzj+zTffjAMOOACJRAJLlizBz372M6Vrdthhh6Gjo2PcMYvFIh577DGccMIJWLFiBR555JGx97LZLJ544gmccMIJiEQiY9fZ6GYTiUTwqU99Cj//+c+xZMkSJJNJHHroobjnnnsmtGH9+vX48Ic/jK6urrH2f+9733Ns+7PPPosHH3wQl1566TghzyxfvhyXXHIJfve73+GFF14AYO4So2/zqlWrxv79+uuv4+KLL8bixYuRTCYxa9YsnHnmmXjppZcc22Z0sznhhBNw7733YvPmzeNcxDRNw+LFi3HyySdP+I3h4WG0tbXhk5/8pOPxBEHYNxExLwjCpOL1118HgHEW0Ww2i3/4h3/Au971Lvz2t7/Ftddei2KxiLPOOgs33HADPvzhD+Pee+/FDTfcgIceeggnnHDCOD/ryy67DN/85jdx4YUX4re//S3e97734ZxzzsHevXsd2/PAAw/gHe94B7Zs2YJvf/vbuO+++/ClL30Ju3btAgD84z/+Iz796U8DAH7961/jiSeeGOeqs3r1anzoQx/C0qVLcccdd+DnP/85hoaG8I53vAPr1q0bO87NN9+Miy++GEuWLMFdd92FL33pS/jKV76CP/7xj45trKurwzvf+U6sXbt2zG/+r3/9K/bu3YsVK1ZgxYoVePTRR8c+/+STTyKVSo1Z9O2499578d3vfhfXXXcd7rrrLnR2duK9730v3njjjbHPrFu3Dm9729vwt7/9Dd/61rdwzz334PTTT8fll1+Oa6+91vb3H3roIQDA2WefbfkZfu/BBx90bK+R7du3Y8qUKbjhhhtw//3343vf+x5isRiOOeYYvPrqq65+6/vf/z6OP/54dHd3j93nJ554ApFIBJ/+9Kfx0EMPYf369eO+87Of/QyDg4Mi5gVBsEYTBEGoQW666SYNgPbkk09quVxOGxoa0u655x5t2rRpWktLi7Zz505N0zTtoosu0gBoP/3pT8d9/7bbbtMAaHfddde415955hkNgPb9739f0zRNe/nllzUA2uc+97lxn7v11ls1ANpFF1009tojjzyiAdAeeeSRsdcWLlyoLVy4UEulUpbn8o1vfEMDoG3cuHHc61u2bNFisZj26U9/etzrQ0NDWnd3t3beeedpmqZphUJBmzlzpnbEEUdoxWJx7HObNm3S6uvrtXnz5lkem7nxxhs1ANrjjz+uaZqmfetb39JmzJihaZqmrVu3TgOg/e1vf9M0TdOuvfZaDYC2bt26se9fdNFFE44DQJs+fbo2ODg49trOnTu1uro67frrrx977eSTT9Zmz56tDQwMjPv+pz71Ka2hoUHr6+uzbPc//dM/aQC0V155xfIzfA8/+clPapqmaRs3btQAaDfddNOEzwLQvvzlL1v+Vj6f17LZrLZ48eJxfcLsN7mP6u/r6aefbno/BgcHtZaWFu0zn/nMuNeXLl2qrVy50rI9giAIYpkXBKGmOfbYY1FfX4+WlhacccYZ6O7uxn333Yfp06eP+9z73ve+cf++55570N7ejjPPPBP5fH7s77DDDkN3d/eYywm7lxj978877zzEYvZhR6+99ho2bNiASy+9FA0NDa7P7YEHHkA+n8eFF144ro0NDQ1YsWLFWBtfffVVbN++HR/+8IfH3F4AYN68eTjuuOOUjqX3m+f/rlixAgCwZMkSdHV1jV2LNWvWYPr06ViyZInS77a0tIz9e/r06ejq6hpzg0qn0/jDH/6A9773vUgmk+PO87TTTkM6ncaTTz6pdA5WaJoGAOOujSr5fB6rV6/G0qVLEY/HEYvFEI/HsX79erz88stltUtPS0sLLr74Ytx8881jwdt//OMfsW7dOnzqU5/y7TiCIEw+RMwLglDT/OxnP8MzzzyD559/Htu3b8eLL76I448/ftxnkskkWltbx722a9cu9Pf3Ix6Po76+ftzfzp07x7Kf7NmzBwDQ3d097vuxWAxTpkyxbRv73s+ePdvTubErztve9rYJbbz99tsd22j1mhnLli3D1KlT8cgjj4z5y7OYB4B3vvOdWLNmDTKZDJ544gklFxsAptcokUiMuTHt2bMH+Xwe//3f/z3hHE877TQAsM1EM3fuXADAxo0bLT/DPutz5sxRarOez3/+87j66qtx9tln4/e//z2eeuopPPPMMzj00EN9T3n56U9/GkNDQ7j11lsBAN/97ncxe/ZsnHXWWb4eRxCEyYVksxEEoaZZsmTJWDYbK8wsslOnTsWUKVNw//33m36HrcksRnfu3IlZs2aNvZ/P58dEtBXst//mm2/afs6KqVOnAgD+7//+D/PmzbP8nL6NRsxeMyMSiWDFihW4//778fTTT6O/v3+cmF+xYgVWrVqFJ554Aul0WlnMO9HR0YFoNIoLLrjA0i98wYIFlt8/6aSTcNVVV+Huu+/GKaecYvqZu+++GwDwrne9CwDGdkkymcy4z5ndz1/84he48MILsXr16nGv9/b2or293bJdXli0aBFOPfVUfO9738Opp56K3/3ud7j22msRjUZ9PY4gCJMLEfOCIOyTnHHGGfjVr36FQqGAY445xvJzJ5xwAgDg1ltvxZFHHjn2+h133DGhyJKR/fffHwsXLsRPf/pTfP7zn0cikTD9HL9utPSefPLJiMVi2LBhwwQ3IT0HHHAAZsyYgdtuuw2f//znxxYvmzdvxuOPP46ZM2fatpNZuXIl7rrrLnzjG99AV1fXODeaFStWYM+ePfjv//7vsc/6QTKZxMqVK/H888/jkEMOQTwed/X9I488EieffDJ+8pOf4IILLpiwK7N27Vr89Kc/xfHHHz+26Js+fToaGhrw4osvjvusWerKSCQy4b7de++92LZtGxYtWuSqrcD4XQkzPvOZz+Ckk07CRRddhGg0issuu8z1MQRB2LcQMS8Iwj7JBz/4Qdx666047bTT8JnPfAZHH3006uvr8eabb+KRRx7BWWedhfe+971YsmQJPvKRj+DGG29EfX09TjzxRPztb3/DN7/5zQmuO2Z873vfw5lnnoljjz0Wn/vc5zB37lxs2bIFDzzwwJg7xbJlywAA3/nOd3DRRRehvr4eBxxwAObPn4/rrrsO//7v/4433ngDp5xyCjo6OrBr1y48/fTTaGpqwrXXXou6ujp85StfwT/+4z/ive99Ly677DL09/dj1apVym42QEmg/+Y3v8H73//+ce8dfPDBmDJlCn7zm99g1qxZWLx4sfLvOvGd73wHy5cvxzve8Q788z//M+bPn4+hoSG8/vrr+P3vf++YkeeWW27Bu9/9bpx00km4/PLLx1KP/vGPf8R3vvMddHd34/bbbx/7fCQSwUc+8hH89Kc/xcKFC3HooYfi6aefxi9/+csJv33GGWfg5ptvxoEHHohDDjkEf/nLX/CNb3zDs+vUsmXL8Otf/xo/+MEPcOSRR6Kurm7cztJ73vMeLF26FI888gg+8pGPoKury9NxBEHYh6h0BK4gCIIXOFPIM888Y/u5iy66SGtqajJ9L5fLad/85je1Qw89VGtoaNCam5u1Aw88UPv4xz+urV+/fuxzmUxG+5d/+Retq6tLa2ho0I499ljtiSee0ObNm+eYzUbTNO2JJ57QTj31VK2trU1LJBLawoULJ2THufLKK7WZM2dqdXV1E37j7rvv1lauXKm1trZqiURCmzdvnvb+979fe/jhh8f9xo9//GNt8eLFWjwe1/bff3/tpz/9qWmWGTu6u7s1ANp3v/vdCe+dffbZGgDt/PPPn/CeVTYbziCjx3jdNI2ywVxyySXarFmztPr6em3atGnacccdp331q19Vavfw8LD2ta99TTv00EO1ZDKpAdAAaGeddZZpNpyBgQHtH//xH7Xp06drTU1N2plnnqlt2rRpQjabvXv3apdeeqnW1dWlJZNJbfny5dpjjz2mrVixQluxYsW49kMhm01fX5/2/ve/X2tvb9cikYhmNg2vWrVqLFOTIAiCExFNeyvMXxAEQRAmCYODg1ixYgV27dqFxx57rKIVat1y1FFHIRKJ4Jlnnql0UwRBqAEkm40gCIIw6WhtbcV9992HhoYGvPvd78bWrVsr3SRbBgcH8fjjj+Oqq67CX/7yF/z7v/97pZskCEKNIJZ5QRAEQagwa9aswcqVKzFlyhR86lOfwqpVqyrdJEEQagQR84IgCIIgCIJQo4ibjSAIgiAIgiDUKCLmBUEQBEEQBKFGETEvCIIgCIIgCDVKTReNKhaL2L59O1paWkzLtQuCIAiCIAhCLaJpGoaGhjBz5kzU1Vnb32tazG/fvh1z5sypdDMEQRAEQRAEIRC2bt1qW3W6psV8S0sLADpJlbLqgiAIgiAIglALDA4OYs6cOWN614qaFvPsWtPa2ipiXhAEQRAEQZh0OLmSSwCsIAiCIAiCINQoIuYFQRAEQRAEoUYRMS8IgiAIgiAINUpN+8wLgiAIgrBvomka8vk8CoVCpZsiCJ6IRqOIxWJlp1cXMS8IgiAIQk2RzWaxY8cOjI6OVropglAWyWQSM2bMQDwe9/wbIuYFQRAEQagZisUiNm7ciGg0ipkzZyIej0vhSKHm0DQN2WwWPT092LhxIxYvXmxbGMoOEfOCIAiCINQM2WwWxWIRc+bMQTKZrHRzBMEzjY2NqK+vx+bNm5HNZtHQ0ODpdyQAVhAEQRCEmsOrFVMQqgk/+rE8CYIgCIIgCIJQo4iYFwRBEARBEIQaRXzmBUEQBEGYHKRSQDYbzrHicaCxMZxjeUDTNHz84x/H//3f/2Hv3r14/vnncdhhh1W6WeP46Ec/iv7+ftx9992VbkqgRCIR/OY3v8HZZ58dyO+LmBcEQRAEofZJpYDf/hbYuzec43V0AGed5VrQ79y5E1/72tdw7733Ytu2bejq6sJhhx2Gz372s3j3u9/tW/Puv/9+3HzzzVizZg32228/TJ061bffDos1a9Zg5cqV2Lt3L9rb25W+s68sEPSImBcEQRAEofbJZknINzYCHrOCKJNO07GyWVdiftOmTTj++OPR3t6Or3/96zjkkEOQy+XwwAMP4JOf/CReeeUV35q4YcMGzJgxA8cdd5zn39A0DYVCAbHYvicXs9lsWbnfw0R85gVBEARBmDw0NABNTcH+eVwsfOITn0AkEsHTTz+N97///dh///1x0EEH4fOf/zyefPLJsc9t2bIFZ511Fpqbm9Ha2orzzjsPu3btGnt/1apVOOyww/Dzn/8c8+fPR1tbGz74wQ9iaGgIAFmnP/3pT2PLli2IRCKYP38+ACCTyeDyyy9HV1cXGhoasHz5cjzzzDNjv7tmzRpEIhE88MADOOqoo5BIJPDYY4/hhBNOwKc//Wl89rOfRUdHB6ZPn44f/vCHGBkZwcUXX4yWlhYsXLgQ991339hvFQoFXHrppViwYAEaGxtxwAEH4Dvf+Y6n68bcfPPNaG9vxwMPPIAlS5agubkZp5xyCnbs2DF2XW655Rb89re/RSQSQSQSwZo1awAA27Ztwwc+8AF0dHRgypQpOOuss7Bp06ax3/7oRz+Ks88+G9dffz1mzpyJ/fffH1deeSWOPfbYCe045JBD8OUvfxkA8Mwzz+A973kPpk6dira2NqxYsQLPPfdcWefpFhHzgiAIgiBUJ5pGVvBJQF9fH+6//3588pOfRFNT04T32Y1E0zScffbZ6Ovrw6OPPoqHHnoIGzZswAc+8IFxn9+wYQPuvvtu3HPPPbjnnnvw6KOP4oYbbgCyWXzna1/Dddddh9mzZ2PHjh1jgv1f//Vfcdddd+GWW27Bc889h0WLFuHkk09GX1/fuN/+13/9V1x//fV4+eWXccghhwAAbrnlFkydOhVPP/00Pv3pT+Of//mfce655+K4447Dc889h5NPPhkXXHDBWFXeYrGI2bNn44477sC6detwzTXX4KqrrsIdd9xR1nUcHR3FN7/5Tfz85z/Hn/70J2zZsgVXXHEFAOCKK67AeeedNybwd+zYgeOOOw6jo6NYuXIlmpub8ac//Qlr164dWwhkdTEWf/jDH/Dyyy/joYcewj333IPzzz8fTz31FDZs2DD2mb///e946aWXcP755wMAhoaGcNFFF+Gxxx7Dk08+icWLF+O0004bW1iFwb63byIIgiAIQm2wYwfw7LPAqacC9fWVbk1ZvP7669A0DQceeKDt5x5++GG8+OKL2LhxI+bMmQMA+PnPf46DDjoIzzzzDN72trcBILF88803o6WlBQBwwQUX4A9/+AO+duWVaGtsREtLC6LRKLq7uwEAIyMj+MEPfoCbb74Zp556KgDgRz/6ER566CH85Cc/wRe+8IWxNlx33XV4z3veM65dhx56KL70pS8BAK688krccMMNmDp1Ki677DIAwDXXXIMf/OAHePHFF3Hssceivr4e11577dj3FyxYgMcffxx33HEHzjvvPM/XMZfL4X/+53+wcOFCAMCnPvUpXHfddQCA5uZmNDY2IpPJjJ03APziF79AXV0dfvzjH49VC77pppvQ3t6ONWvW4KSTTgIANDU14cc//vE495pDDjkEv/zlL3H11VcDAG699Va87W1vw/777w8AeNe73jWuff/7v/+Ljo4OPProozjjjDM8n6cbxDIvCIIgCEJ1MjoK9PUB/f2VbknZaJoGAGNi0oqXX34Zc+bMGRPyALB06VK0t7fj5ZdfHntt/vz5Y0IeAGbMmIHdu3cDmQxQLNKuho4NGzYgl8vh+OOPH3utvr4eRx999LjfBYCjjjpqQrvYQg8A0WgUU6ZMwbJly8Zemz59OgBQG97if/7nf3DUUUdh2rRpaG5uxo9+9CNs2bLF9vydSCaTY0Ie0J23DX/5y1/w+uuvo6WlBc3NzWhubkZnZyfS6fQ4q/uyZcsm+Mmff/75uPXWWwHQPbztttvGrPJ8vv/0T/+E/fffH21tbWhra8Pw8HDZ5+kGscwLgiAIglCdZDIk5Pv6gGnTKt2asli8eDEikQhefvll2xSFmqaZCn7j6/WGnYpIJIJisQgUCkAkMkHMWy0mzI5n5gZkdjz9a/wbxWIRAHDHHXfgc5/7HL71rW/h7W9/O1paWvCNb3wDTz31lPmJK2LWDs1wrkaKxSKOPPLIMVGuZ5quX5md94c//GH827/9G5577jmkUils3boVH/zgB8fe/+hHP4qenh7ceOONmDdvHhKJBN7+9rePc98JGrHMC4IgCIJQnWSzwMAA0NNT6ZaUTWdnJ04++WR873vfw8jIyIT3+9/afVi6dCm2bNmCrVu3jr23bt06DAwMYMmSJfYH0TQS85o2QcwvWrQI8Xgca9euHXstl8vh2Wefdf5dDzz22GM47rjj8IlPfAKHH344Fi1aNM4KHhTxeByFQmHca0cccQTWr1+Prq4uLFq0aNxfW1ub6U4GM3v2bLzzne/ErbfeiltvvRUnnnji2C4EQOd5+eWX47TTTsNBBx2ERCKB3t7eQM/RiIh5QRAEQRCqk1QKyOeBrVtJcKmQTgMjI8H+eQzK/f73v49CoYCjjz4ad911F9avX4+XX34Z//Vf/4W3v/3tAIATTzwRhxxyCM4//3w899xzePrpp3HhhRdixYoVpu4vE2CrvEGcNjU14Z//+Z/xhS98Affffz/WrVuHyy67DKOjo7j00ks9nY8dixYtwrPPPosHHngAr732Gq6++upxmXOCYv78+XjxxRfx6quvore3F7lcDueffz6mTp2Ks846C4899hg2btyIRx99FJ/5zGfw5ptv0v3M5y1/8/zzz8evfvUr3HnnnfjIRz4y7r1Fixbh5z//OV5++WU89dRTOP/889EYcjExEfOCIAiCIFQnw8NAMknW+cFB+8/G41TIKZWiHPBB/qVSdCyXecgXLFiA5557DitXrsS//Mu/4OCDD8Z73vMe/OEPf8APfvADAOQ2cvfdd6OjowPvfOc7ceKJJ2K//fbD7bffbv/jLOCjUUsr8w033ID3ve99uOCCC3DEEUfg9ddfxwMPPICOjg5X56HCP/3TP+Gcc87BBz7wARxzzDHYs2cPPvGJT/h+HCOXXXYZDjjggDFf/T//+c9IJpP405/+hLlz5+Kcc87BkiVLcMkllyCVSqG1tdXWMg8A5557Lvbs2YPR0dEJLlI//elPsXfvXhx++OG44IILxlJ/hklEc3I0qmIGBwfR1taGgYEBuhmCIAiCIEwe7r6bMtqMjgLvfS+w335Ip9PYuHEjFixYgAZjvvdUilxzwiAed139NVDyeYotiMXoGrS3B188a7IwOEjXr7Mz9EPb9WdVnSsBsIIgCIIgVB+aRpb5+nr6/74+YL/97L/T2FhdAjtM8nmyMNe95XSh6pYkUP9i67xDtqFqRNxsBEEQBEGoPvJ5sjDX15OrzZtvVrpF1U0uN/7ftet4ET688KnRayZiXhAEQRCE6iOTIUFfXw80NwO9veRuEwTZ7EQxXEtoGp1DNEr/jkQoq42gBscbiJgXBEEQBEHwiUyGBHYsRmJ+eJhcbYIgnQ7P1z4ICgX604t5cbNRQ+9iU6PXTMS8IAiCIAjVB1vL6+vpjwM8g6BYrFkhB2Civ7xY5t0jlnlBEARhUpLLOacEFIQgyGRIkMbeytURjwO7dgVzrFoX87nc+MBNzjVfy+cUFnoXGxHzgiAIwqTjjTeAxx+vdCuEfZFMZvy/m5uBbdv8921n0Vurwpf95et0ks6icJRgAl+jGl78iJgXBEEQrEmngf5+EQVC+Bh92FtayG/e750i7ts1KuSQz4/3lwdEzLtBLPOCIAjCpCaVogwitZzpQ6hNjJb5hgZaXA4M+HucWhdzRn95QNxs3MD3na9ZDSJiXhAEQbBmeJiEvFFYCULQjIyMtzYDJFj37PH3OJNBzBsLHYVgmT/hhBPw2c9+NrDfDw2+RjWcAUjEvCAIgmDN8DCJBRHzQthw9Vc9zc0UBOunSNUL+QDFXCQSsf376Ec/6v5Hzfzl9Zicz5lnnokTTzzR9ONPPPEEIpEInnvuOfdtqVX43tfV1WwGoFilGyAIgiBUKZoGDA2JZV6oDKOjpUw2DPvN+ynmOcd4wG4WO3bsGPv/22+/Hddccw1effXVsdcaGxvHfT6Xy6HeuJgxwv7yxuvEmJzPpZdeinPOOQebN2/GvHnzxr3305/+FIcddhiOOOIIh7OZRIhlfh8nlwNef722C00IgiBYwXm+czkZ54RwKRZJzBvFbDJJcRx+ii59NpMAxXx3d/fYX1tbGyKRyNi/0+k02tvbcccdd+CEE05AQ0MDfvGLX2DVqlU47LDDxv3OjTfeiPnz59M/3vKXv+m227DkmGPQ0N2NA48+Gt//8Y/pfZPrdMYZZ6Crqws333zzuNdHR0dx++2349JLL8WePXvwoQ99CLNnz0YymcSyZctw22232Z5fJBLB3XffPe619vb2ccfZtm0bPvCBD6CjowNTpkzBWWedhU2bNo29v2bNGhx99NFoampCe3s7jj/+eGzevNn2uL7BYr4GXa1EzJdDTw/wyCPAvfcC27dXujWCIAj+whU4xc1GCBt9wSg9dXUktvx0hwhJzKvwxS9+EZdffjlefvllnHzyyc5fyOfxo1tvxb9/9av42pe+hJefegqrr74aV69ejVvuuMNUzMdiMVx44YW4+eaboenO984770Q2m8X555+PdDqNI488Evfccw/+9re/4WMf+xguuOACPPXUU57PbXR0FCtXrkRzczP+9Kc/Ye3atWhubsYpp5yCbDaLfD6Ps88+GytWrMCLL76IJ554Ah/72McQMcYD+I3eMl8FfcAL4mZTLiMjtA29cydwxBHAoYdSxL0QPJpGC6qurkq3RBAmJ5kMiSpNEzEvhEsmQ4vIpqaJ7zU0+Cbm8/k8Vq9ejbV/+hOWH3MMrrrmGsQSCV9+2wuf/exncc4556h9+C1/+a/853/iW1/5Cs4580wAwIJ587Du1Vfxvz//OS664ALTr15yySX4xje+gTVr1mDlypUAyMXmnHPOQUdHBzo6OnDFFVeMff7Tn/407r//ftx555045phjPJ3br371K9TV1eHHP/7xmEC/6aab0N7ejjVr1uCoo47CwMAAzjjjDCxcuBAAsGTJEk/HcoVRzBszA9UAIub9YL/9KFXWn/4EbN0KHHMMMGdOpVs1+dm9m4rZnHwybb0KguAv6TRZR+NxcbOpFLt2Aa+8AqxYUemWhIuVZR6g8b5QsBb0/LoxE44Jq1evxqqvfQ2apuHhxx4DEglc85WvqLcxFvNV+B111FHqH87n0bNrF7Zu24ZLL78cl+kyy+TzebS1tFi6Ix144IE47rjj8NOf/hQrV67Ehg0b8Nhjj+HBBx8EABQKBdxwww24/fbbsW3bNmQyGWQyGTSZLa4U+ctf/oLXX38dLS0t415Pp9PYsGEDTjrpJHz0ox/FySefjPe85z048cQTcd5552HGjBmej6mE3hIvlvl9nM5OCszZuhX43e+Aww4D3vY2mgSFYBgaokCoTEbEvCAEQSZDE1t9PT1rQvj095OgtxK2kxV28TI756Yma1ebbJb6ajQKtLU5Hmbt2rVjriaapmGtm2rHIyNAY6Ovu/FGsVxXVzfOFQagwFgAQD6P4lvX4Ec33ohjDAuBqD5Dj8mC49JLL8WnPvUpfO9738NNN92EefPm4d3vfjcA4Fvf+hb+8z//EzfeeCOWLVuGpqYmfPazn0XWZlEfiUSs2wqgWCziyCOPxK233jrhu9OmTQNAlvrLL78c999/P26//XZ86UtfwkMPPYRjjz3W8rhlUyySVZ5duGpQzNfWPkK1U19PVvrWVuDJJ4EtWyrdoskNi3mxGApCMLBrTX09CRchfDIZGudSqUq3JFx4IWlm9ebMLXoxr2kUMDswQDtKim44y5cvH3P5iEQiWP72t6u1r1ikv4BTGU6bNg07d+4cJ5L/+te/0v/k85je1YVZM2fijc2bsWi//cb9LZg/31acnnfeeYhGo/jlL3+JW265BRdffPHYtXjsscdw1lln4SMf+QgOPfRQ7Lfffli/fr1jW/UZe9avX4/R0dGxfx9xxBFYv349urq6sGjRonF/bbqF1+GHH44rr7wSjz/+OA4++GD88pe/dHnVXGK8PjWY0UYs80HQ3k4uICIyg2XvXprgpDKlIASDiPnKk8nQtU+lyFC0r6ASo5HP038LBbpGo6NkkY/Hx6ebtOGqq64CUimsfeIJLD/6aFz1+c+rtY8t3gGL+RNOOAE9PT34+te/jve///24//77cd9996G1tXUsv/yqL34Rl//bv6G1pQWnnngiMpkMnv3rX7F37158/mMfo3aauBw1NzfjAx/4AK666ioMDAyMy3O/aNEi3HXXXXj88cfR0dGBb3/729i5c6etD/u73vUufPe738Wxxx6LYrGIL37xi+NSa55//vn4xje+gbPOOgvXXXcdZs+ejS1btuDXv/41vvCFLyCXy+GHP/wh/uEf/gEzZ87Eq6++itdeew0XXnihr9d0AmyZZ8Qy7458Po8vfelLWLBgARobG7HffvvhuuuuQ7EGV0WmiMgMlt5eGkhl0SQIwcDuCrEYickaLahS07Ar4b5mmXca1+vqSMxns2SNHx0lEV9f7yorSSwWwzVXXIEH77wT11xxBWKq/u/8+7ygCIglS5bg+9//Pr73ve/h0EMPxdNPP10KTH1rsfKPF16IH3/nO7j5l7/EsuOPx4ozzsDNv/wlFsyb53gdLr30Uuzduxcnnngi5s6dO/b61VdfjSOOOAInn3wyTjjhBHR3d+Pss8+2beu3vvUtzJkzB+985zvx4Q9/GFdccQWSOhfYZDKJP/3pT5g7dy7OOeccLFmyBJdccglSqRRaW1uRTCbxyiuv4H3vex/2339/fOxjH8OnPvUpfPzjHy/rGjpivD41KOYjmtHBKUS+9rWv4T//8z9xyy234KCDDsKzzz6Liy++GF/96lfxmc98xvH7g4ODaGtrw8DAAK1Sw2b7duCOO4D58yeuetevB97xDvKbF/wnnQZuvZV2QN77XuDAAyvdIkGYfPy//wds3Ei+x+k0cP755CMshMfvfw+89BKNc2Fk9qgWnnySEhwsXjzhrXQsho3TpmHBjBloYCt8PF6yrhaLJLI7O62LKTHFItDXR/+vaTSXd3Y6ty+bpd3haBSYMsVxB8B3CgVqd12dfaBvOg10dABhZujJ58mY2dAQ/nXxwp491A/q6+l6NTfTX0ik02ls3LgRCxYsQIMh/kJV51bUzeaJJ57AWWedhdNPPx0AMH/+fNx222149tlnK9ksf6ir2/csKWEyPEwPXbEolnlBCIj84CBWP/AA1m7ahOXz5uGqs89GTMR8uHBc0CSdT8ZSQ65di+XLl+Oqq65CLBaj87YT4vpqrUah6iZfOH+OLfKK7jnQB5faVWANCj6+ilgO29shl6OYtnyeRHE1C3rjdazRKrAVFfPLly/H//zP/+C1117D/vvvjxdeeAFr167FjTfeaPp5To3EDA4OhtRSD0SjJDaFYBgaoq3nRELcmQQhCAoFrL79dqz6/e+hAXj4pZeAr38d13z968Ec7403KN5IxSq6r8DFuopFGvMmIatXr8aqVasoNeTDDwMArrnmGvKBd8rew241RryIef3iQFXM838rIf7ciPmwHTA409DICP1/c3P15m03XhsR8+754he/iIGBARx44IGIRqMoFAr42te+hg996EOmn7/++utx7bXXhtxKj7CPqRAMw8OlLVG5zoLgP5kM1r76Kniq0wCsffLJ4I73t7+Ry6KI+RKcnrGpiVJUTkImpIZcu5beGBkp39qtIsr0op+FnIr45d+ulJhX3UHgz4ZJoUDivb6eYhk0jVJ3V6OgN+7MRCI1GRtU0St7++234xe/+AV++ctf4rnnnsMtt9yCb37zm7jllltMP3/llVdiYGBg7G/r1q0ht9gFIuaDZWCAHrpYjAYLQRD8JZPB8oULwVIhAmD54YcHcyxNo2d6kgpWz+jF/OBgTQbmOTEhNeTy5aUdiXLz6qta5ung7i36TKUs8ypUwtKsz9sej5MWGhysTpFsvN9u+kAVUVHL/Be+8AX827/9Gz74wQ8CAJYtW4bNmzfj+uuvx0UXXTTh84lEAokKlll2RTRa2h6txtVordPbWwrEEzEvCP6TyeCqlSuBpiasffVVLO/qwlWXXBLMsXI5+uNARIFgMd/aSv+fTk+6AOSrrroKAMb5zCOTIUFvVQxQZ8m3xa2bjf7fTujTGVZCpLoR82G3r1AoXZu6OnKHTadLFvqw4wtUMPrMW6TzDAI/8tBU9IqOjo6iziB0o9Ho5EhNGYuVIrprZQFSK+RyZMFrbKT/FzEvCP6TTiOmabjmwx+mCe6114ITBdksjZf9/fTfapzsK0EmQ9c8maSMG6nUpBPzsViMfOT1DA7S2G7RD+rfEluj2Swa7eZXVTcbxo1VVi/mA05PaXl8FfSuQ2EEorLbkf5YkQjpIC4E1tYWmlB2xCwANmTLPBfWqi9jJ6qiI+aZZ56Jr33ta5g7dy4OOuggPP/88/j2t7+NS4Ky/oRJLEYrURHz/sPVEDs66IHLZmnCq5bBQbBmaIhSHR58sOxYVTucbEA/yQUV1J/N0lhZLJKvtK4a5KQilQKeeQY49lhyP3CCxU8iMakz2kyA+4OFuIlqGtqHh7G7txcAkIzHx1x1xsjn6Xo5LQy58CCPR7lcKVOa0/dYtBYK9O8ws7ak06U8+3bwAjyVCmfM5QxzZu49kQg933V1lLayGuC+pt+ZyeXoepXr5uWApmkYHR3F7t270d7ejmgZGqaiYv6///u/cfXVV+MTn/gEdu/ejZkzZ+LjH//4xFV6LRKN0kMkmVb8h8X8jBl0fTMZeiAnmcVqUrJ9O/DnP9P/H3JI+McfGaHFxEEHVXe6tGrAKNzr6+nZCwK2zOdydIzJKub7+4GdO2lRO2WK8+d5QRWNlsTpvgDvSNgI8e63+uLufN5cpLKBx8pVh8lmqa/zsfJ5yh9vJ+Q0rVQRmUUr53wPi1SK2uokANlSHlb7eEFeV2c+xubzdG2rZb7O52l3X9/XuA+EtEPY3t6O7u7usn6jomK+paUFN954o2UqypomFqOJSXKg+48+k00sRgNHLlc9g4NgTV8f0NMDPPEEiZlZs8I9/vbtwLp1VIhGdszsSafHT8acmSIIWMwDwS0YqoF0ulQjQ/XzTCSyb4l5B7eQCIAZw8PoGhlBzkw49vbSM37mmfYL9+efB/76V8qkBACbNgHHHQcsWGDfvt//nuafZBLYtQs49VRg6lTFE/SBBx8kwdnVZf+5bJbG3NNOCydTVE8PFfuaPt18QdTfT4L/jDOqYwzetAl47rnS/efXVq4c/1pA1NfXl2WRZ8QxMSjEMh8cQ0OlwTkWo+ssi6baYPt2YNo0EimPPUYDeoiV9rB3L2VN4RoFgjXGoj1cyCcI31u2QOstnpORVKq0s6iCMdf6vhIf5GI8j2oaomaxHMUiXeto1N6liY1BvJgcHS1VL7VrH+8gRSLk45/Nhuc6wtmf8nlnf31NozmzWAynfVwTYfp087Y1NJBY7u8H5s0Lvj1OaBrdc31bR0dJV1SLK5AC4rQaFNEodWoR8/7T01MSYrIDUjuMjpKYbmqiQXzLFrLghJlpYft2WkhIQTdnhofHC8n6+vEWdD/h5zcen9wZbdgyryrmBwdL96C+nv69L6ArDumZ+vqSG6Ydo6Pj+3ldnfP4wFmG9N8LcxHK2Z9UfLrZsOjHNVXBaVeFDXA7d4bTHiesxrOwrpdPiJgPGhHz/sK+f7xiFst87dDfTxNeczNNMPPmAS+9BLzwQjjHz2So76hM8IK5mA/q2vHz29BAWVsmK0NDJBTdWOZ5dySR2Hfy8I+MlJ/QoL5eLUA0lRp/LJXaJZw6k+9NJBKue5jZYsKOSCS8MU/FUNLSQhWfqyFzoZlGq6uruV0wEfNBIyLTX0ZG6CEz+sfvq4umaizCYQWnHeQJKJkkH86nniIrfRjH5y11sczbk81OLNrD4igIUZDJkOBoaKB7NFnvDxd+UrGw844j34N4nK5NJdIgho3RvcgLvGtr11+LxfHBr/w9FTGvz0OeSIS7o2RcTDihaeFa5p3c8Nrb6XpVw8Jdn8mGqcFilCLmg2ZfFZlBwcFjRl+2fXHRNDgI/L//VzuDzp49E7MpTJ1Kz8jatcG7EAwMUD+JxcQy74SZ5U9FHHmFLdANDWQpnYx+8yziVd1lstmJYp4zr0x29DsSXuFdW7v+ymmNjWLeaefEON8kEuRCGFZucreW+Wg0vHmC4xTsSCbpGu/aFU6b7EinJ85LQWbuCggR80GzL4rMIBkaGm/dZfbF69zXR9bmoaFKt8QZTQN27DBPEzd3LrBtG/nPB2l11FvO9gVBVA5s+dMHDgbp0sap4biwTI1NpErwbkdzM52fk4uBUbDtK7nmOSDRrxzfdmKefc+NYp5TY9r9pl64NzS4c58qF45dUXVFqq8Pb54YHFSroRCPUyBspclkJl7H+npaUIZYOKpcRMwHCReOEvzDbJIP0x+wmhgYIIFaC5b5kRFqb1PTxPeiUUoB9ve/A6+/HlwbeDERjVbO8vvmm8Af/1j9rhLpdGkXw0gQzxqL+bq6yZvRJpWia9fUpGZh56KD+gDYfUHMs1D1K8e3k2XeeCx99XYrjNZcFvNh9VsVVxY9YVqaVXdV2tspCLbSC3ejmxVQ2oWsIc8KEfNBwjnQBf/o65tosYlGJ/8EZ0ZPD1lbakHMs7+6mZgHaDJsaKCA2CCEbjpNfaepiSxClcgKsmcPsGYN8PLLtCVfzRh9go3v+YnRbzkSqY3dJrewOG9upmvoNGYZCyfxQmeyj3VuXUicsNtJshLzTjtQxrSt7AIV1ljs9hnkGhFBW5rZDU/l3rW2koGn0q42mYy5m02NZckTMR8k0ahY5v1E00jAGoNfazBYpWyKRRoEw5xAyqG/37GiI6ZPJ8t1EMGw+sVEJfwhR0ZIyO/aVVpYVDNO1kw/YUGldyfp7fX3GNVAKkUCoalJLQjb6h7UgpjXNO/C0U8xz7URrMjlzH3mnbLgGAN0I5Fwd5TcWuaDjHfRw9XYVdxsolE6hx07gm2TE1ZuNkEF+weEiPkgETHvLxwYZwx+3RfF/PAw/TU0kHWj2untdfbvTCTIQrJunf8py/r7aTKLx2mgZp/wMMhmqUDWG28A++1HE1ilrVFOWI1bQbgoZbPj/ZYbGmixUw1p6/yErynn/VaxzBupq6u8W4IKr75KVZ694KebjdPCPZudmBNdxcXCypUkTFcWN6k7g0wrqyedNo9ps6K1Fdi4sXLuLIWCeV8La/HjIyLmg4R9HGspfWA1w5lsjJb5+nqaGGsoWKVsBgZoQO/oqH6XjWKRijVZudjo6e4m0eu3tWbv3tKEzc9lGAvtYpFEzUsvUXn4WIxyLL/5ZnWL1dHRiVvPQDC7GkbLfNjBhGFhPB8Vn3mj9TUer53Fu9fdFXYv8qHEvZKYN8IFH60s81auJPG497G4WAT+8hdgwwa1zxtrQDgRlph3u6vS3k7XrFI7cbwzYxzrVHZnqgwR80ESjToH0qjQ21v9gi0MhodpsDBu4fl1nWuJgQFavDQ2lnKnVyvDw+QDrSLmk0k6l5df9rcN27eXFoHxeHhWl7/+lSbpWbNKVYubm+n+VXMBICuxwL63fmK0xHJ6ynIWDa++SguoamJoqCRQIxHnxYrRLxsoiflqN1zs3u19B8dPAcW7cFYGNbNjscuMVTuMi0+Gd5TcUijQgv+Pf6RFvgrVLObdLMQ4Q1OldirzeWv3zxpLrCFiPkj8SOU2NAQ89BBl+tjX4aA4swIPNbaKLps9e2jA5FR+1WzFZH91s7SUZnR3A+vXU3yEH6RStBjmxQRPbEFb5tevp3SbnZ1kjWeamuh6VLPf/NCQuVhglzY/dxWMAoCDCcsR87t2AZs3+9M+v9Cn7IvFnIOwzQRbIlHKNFStZLO04HBK72iFnwKK5war37QzglhdY7Y+GwVgIkHPhptxpVAAnnyS/gC1BT7nzncj5jl4Ogw3G7c0NpKrTSUWqCzmrRYf1fycGRAxHyQqKa7s4BX7+vVk6djX6e83f+j2NTGvaZTSK5ksiflqjhngYiqq1prWVhK7r73mz/GNmXTYZznIiW37duDRR6lvTpky/r1IhCbXag3yLBat83wHkeXByjpajm/+wAAteKvFxVHTxi+QVNxlzPyy4/HqX7wPD1P7vI7JZu5FXnGySI+Omo9LmmY9b3OMh9lCy81YrBfy3d00TgwOqtUf8BpTEIZl3i3t7aRvKuE+xm42VnOTWOYFACXR4FXM/+1v9NfVRYJkXxGrVvT2Tgx+BcpfNNUao6M06CeTJf/vahbzu3e7z0wxdSq52vgxwPf3TyyABARrmX/lFWr7rFnm7yeTwNat1ekuYef3GkSWB7Nxra6uPDekoaHyXXX8hGM02NUqHrcvHGXnl13tueb52nsV835Uf2WcxLwxKw1TV2f9HSsxzbsmKotQNtSxkG9tpXubTqtlOfKa7SdocWoVa2MHF1GrhKtNPm9dfKuS9Ug8IGI+SMqxGG/fTg96eztt06dSlcmNXS3w1q2dmN9XFjtGtxUV/9tKUSjQLoKKv7yezk6y6PtRRKqvz9zSF9TEpmk0Melda4y0tFC7qjGfOosFs/RyQWR5MHtuvfof8++xKKoWMZ9Oj4/3YVFuJdysBBuL02p93gG65uxXXmkx7zQ3pFLmx7LLRMd93zimRKNq6SnNhDxQ8h93MsxY7Qw4EY0G/zxYuefZUVdHbdu2LZg22ZHPW9fT4CqwNYKI+SDhQBq3FuOREWDtWhpopk0rZXeoxok/LKwy2QAlf8B9RcwPDtKEwINmuS4JQTI4SPdO1V+eiURoIfu3v5UvXMwy6dTVBbebwSlUzfoqU81+88bKo3qCcLNJpSZa8xoaSjsqXn6PrdfVMmZyjnkW804ZlewWVNW8eAfI6MI7OF76idvgTjt4DrbL2W/lumk1pjotZO3GFc5u9eSTwMyZJSEPlFyonMYlr242YdTX8Hrv2tooxiVst5ZcbmJqUqbGin6KmA8DN2K+WASefpo69vz59Bp3tGqZmPSElUefxbyZZZ7ZV9xsjJbm+vrqzYzS308TplsxD9BCtqeHUlV6ZWSExIVRzNfXB/c8cVVeu3Pm9Hfl+s3v3Ol/iks7sRBEIN3o6MRjsQHDy2TKYh6ont1MFvN8nmyFtRLlVkGW+t+rVnbvpufNLr2jFV6CO1Uw66+cS97sGtvVLrE7p/p6+8xzO3YAzz8PzJgxceeOny0VMW8lQO0IWpwWi9ZuS060tdE4HXZsoJ2xgFNeV3MKYR0i5sPAjch8+WVKZzd79niLQTRafekpt2wB7rsvnNX00BANYHb+ePuKZX7HjvFCMR4vX8xrGqVQ9DsIqb/f+b5ZEY2SKHjpJe8Ltf5+852BoMW8ShXEZFI9FZ0Zw8Nk5fM7kFZFLIQl5r1YEnlnoaWleoKM2ejB15TT6dpZ5q1S5sVi1ZtrPp+nZ66hwdtuaTnBnU6/a8QqxSRAx7eqXWJXsCmRsN9te/11Oq7eIm/EaaHmdZ7jtLJBidNyfPl5J+fJJ4GHHwaeeYZ2ZV9/ndxvglqU280r7FJYI7rC5ydGMEW1M+zaRZNzczP96WlsrK6qkfk88Nxz1KZUqhTYFRSDg86WiBp56MoilaKJXC9OE4lSrnmvFq2BAcrN3d5OVhK/2LlTrbS3FdOnA5s20d/ixe6/PzAw3iWJ0U9sXhYadqguEpqbSWzqM+24gasA+72YVtltC1rMc1pfL5ZEbn9jI2W0CeIeu8VMGNq5y9hd33i8enYcjHDwa0cH/duLmOeFmF9Eo+bXOZezXjjwYstM7Nu5kiQS9L7ZWDw4SJnppk61b6vTveXFtls4534mY+8C6JVy792cOfS87thB113T6C8Wo13a973PfmfeCyqW+WzW/+MGgFjmg0a18EA+D/z5z/Qgd3dPfL+xkd6rlu3VN96gv7Aqafb22i8YotHqzujiF1z5VS/+/EhPuXs3ubT4eS/zeVrseRGqTH093VvVyohGenvNhVyQhaP27FFbwLS0kPjx6jfPxbj8PodMxn7hHIn410/Yr9pMHGmaN8s8j5ENDfRMVIPfq1kBKMCbmE8k6L5X4/Y/p6Vk8eNWzHsN7rQjFjPvR2yZtwp+tPL5twvQtXMP27iRdtfb263bmkg478BbpdN0IujCUXaxNiokk5T9a8ECMtzsvz9wwAFk0AlK+ziJ+bCKC/qAiPmg4e06J0ZGSFDNmGH+fjJZPQFdmQxZ5ROJcIrvFAokeOysCXbZByYTAwMTA+P8EPM7dtAk4ufAZbbw8EJLCy003OYM17SJLklMUIWjNI2eYxXLVyxGgqxcMe/3jtTwsL1Y8NP31k68xePers3ICC3gGhurJ6PNwMDEBV59vbUV1i7XOgdKVuN4x+6Q0ai31H5BuNlYBX7aWeatsuAUizQP21nmM5mJ553LAevW0Vhmt0uUSDjnmvcaZBq0OA3KRYrjS4Lo73aGixpzsxExHzSxmFon5Kp+VhY9HiSqYXv11VfJ13fmTPp30JPKyIh1JhvGLmCpEmzfHoxfq5lvPA/SXs8/lyM3Fi4W5Bcc/Frulm5jI/UBt6JsZISeF6PLGhDcxMaWYNVzjse9p2Tr7w+mGujwsP3Ogp9ZMdg6aiYAGhpol8MtLJzZulppA4ixYBRjF7cxNGQtiqo517zeHdLLmOw1uNMOdqkzuqZks9ZpCa1ql/Di0+resHuY8by3biXDwrRp9m1VqehtVdDNiSBqROgJ4t4BzlV8yyGTsTZccJICscwLANTdP1S3qCo9MQ0PUzR+W1tpQAu6s7Mfpp3fWrWJ+eefp21Vv9mxw1wolpOurqeHBFB7u7+LRd4uLndwb2z0VmfBmI9fD1td/F6Icl9VFfMtLRRX4OUZ6ukJZpKzE5KAv8+anThqaCgt5N0wODh+MVLpMdNYMIqxs8LaWV+rWcz39JTO00s/CcIKamVltzsW+8ybfUdlntZb5jWNDGB1dc7ud067rJzH3ov12ylNZ7kEZdTj+SOI37eqM6BHLPMCgJJl3ilghQdmO+ETj3uzVPnJ3/9ObgRdXfTvSCR4ET08bJ3ZgeG8zdVQvl3TyD3A712UTIZ+10yclpNrfvduunac+9wvdu70J9CKLSRuRRkHv5r1G37OghDCVvnBzWhpof7t1p0km6Vj+V0IxqryqB4OpPMjFayTZZ5z9rv5vVRqfD73So+ZvHtiVc3VrA/apfjj56HaxLzRHdKrZd5vrHbhnMS8WWpNdiWxez6i0fG7sr29tPPJc6ZTW+0WapxOs5yYgiAt835b5Y2/7zfZrHNwvFjmBQDjo+LtUFl1NjaS8KpUCfi+PuDFF2mrkB+AIFP8MSqiuJqqwHK1R79TiQ4O0uRo5oMej3s/3qZN1LficRIRfiyIslmy0pXrL89EIu7Tb/b2OgeKBWGZd/N8sqBzKzi57kJLi7+LabtiRYyfhaN4a95sQmUrpZvFCu9wcvsbG6kfVGrMBEoZMYyWeSvhprKg4t+tJjj4VS/mWXyqMjrqf+YhKzGv0i7jZ5zy/wMTg1jfeIPGVZUsL0655stJ/8gEZUF3irUpB7c7z+m0Ws76TMb+XvoZ7B8wIuaDhv3UnAaO0VHnVW0ySQ9MpbIzvPgiCarOztJrYaRJ27XLOTWU1bZoJeDJe2DA34wTAwPm2/WA91zzg4M06LW1+etTyS4ufol5XsiqomkUt2BXuCmIgbq3130qzvp6cp9yA4v55uZgxLyTZd6vfmL3vLKwcTPepVLULr2YHxmprAseLzCMosGqcJSKy2U1Vn02uph5qQLr1R/cDqtARrsgY8bMzcbKz57h6sWFAl2PV14ppepUxU7MlxNk6iUoWRWje5ufxGLujIZbtlDOejvY5cgp2L+a3HdtEDEfNCwyncS8yoPAvsOV8AHdvp1cbGbOnFh9dGQkuDRpqhbecsqH+w2LeadAJrcMDNC1N5uAEgkadNye/+7d1J9aWvzN8NLfT+fvV37exkaydqme3/AwPVN2/cbtBOGEplFfdeta1NJCz5cbC+bwMB0vHqf75dfzpyIkWRwFLeYB6utu7lE6Pd4NopJjJmPlQhmNkuAzPm8qrhzxePUVjhoeHi90veyWWqXwLAerQEaz+gZGzNxsnNBntNm0iRb4U6a4a69Vfy3XMu9n8LoRr778KsTj7p5hrsdi1/fyeXr+7HaCrNKaViEi5oOGo9udBjSzbAdGKpWdoVgEXniBBhJj5bog83UD6hZeq+wDlYCtg27TRfb12bu47NxpLY69pqfcuZNERl1dadvfj3vpNd2iFY2NdG6qfb+/39olifF7YhsZsQ64tYPzzbtxk+J2+50+jSuPOlmr/Fo4O/1GIuGuiisXZ2LhzONTJSdkq0qijJmYdxJs1SjmjTu0bt2xeBfGb8s8YxzXnI5lViNGZWxsaKDPDQ1RRfeGBnfuJ3a55u1y46sQlJhXdQ3zCruAqrrL8VhsNx+ymHeKxRMxLwBQs8zn89TxVKuohp2ecvNmisafNWvie04BO+WiauFlK1e1WOajUWqLqrjO5aiM9V/+Yv1+T4+1UPQi5vN5shzxAs1P94m+Pn+r5vEEqdr3+/udt8Pj8ZKF2w/cZrJh+NzcLIC4iJrfadtUfsfP4GGnAjiJBF0X1Z0Hs10lTg1ZKZyszcaxU2VBFY/TtasG4wXT0zP+mXfr+uhHcKcdxv6aTrvP2qTimsOLmNdfpxTOKoGvehIJaxfNcoNMuaqp34kiMhn71NrlEou5MzQNDjrvjOdyaoYLfh6rHBHzQcMi027Qtcp2YEYi4c532A+2bKGBxUxI2mVk8IP+fneDVzWIeQ7isgtkMjIyQkGQzzxDAVNGOPjVSsyzqHOzqOrtJQtQW9v41/1ws/F7y5Wvp6oo6+lxtl7xQtSvPjM05OweYUVdHcWGqMCFphoa/Hcvc3Pv/XjmnayjXPhJtV9zwSg9lc4CZrfrWl8/0cKu6spRTekp9X2S4WdWtW+qBJd6xRgfUyzSv+3GCHYh1ePGDaivj55Nt0YNu3tb7jMXVK55o3ub37jVGVxMz+75YMu8Ux+oFvddB0TMBw0LUbvOYMzAYEcySRNTmKW8d+60dldgN6KgIr63b3dn6ayGh25wsDTgqwYbcUBjoQCsXTtxm3VgwNnq6zZN6O7d5rse5Q70hQKdt99WmmhUzXqdz1MhJqfsEX4XjnKbyUZPczNZ8VSe61Sq1Bf8drNJpdQXz35Z5u3EEaenVN3qNqu02tBAi7tKZbQxaxNjlg1M5bpyFdhqEfPDw3QvzcYn1b7JLiRBCEKj77NdSlT9d4zzmqobUCRC4+vUqe7barfL6odlPgi3WD+y7NjhJp6LPR2cng/OMugk5oN0I/YREfNh4Zdlnn2Hw/LjYj9lJz/gIMR8Ok3izU1GlGoQ8/39NCDX16tnmOHgsXnzaBJYu3b8ubD1zm4gj0Tc9YstWyYK+XKKTzEqAXxeaGxUs17v3UsLKhUx72eZcH3BHLe0tFCbVfoLpwBkX1w/qxSqlopXLYZnB+9cOWXOyWbLE/Oc0aYSKeasCkYxZoWj3LhyVJOYtyrsVw2WeaOVPZdTyxdvDC5X3XFsaqK5q73dW1utrMojI+WlfwxqEajiGlYObkQ16ymnnepcztkV089g/4ARMR8WTmLeqVMxLObD8pt3cu9ggpgo+/tpklANKIxEKi/m2SqdSNgHMhnhiaauDliwgNKZPfNMyZq4e7ezyHJzvOFh2nExBjT7Eb3vZnHqhmSSFpZOInLPHjXfdT+tLsWit0w2TDJZcrVyYnh44k6eX/1eNb2cH4FhLKic8jyrpmFky52x31Uyow1ntrJzszG6D6i4crDYrxYxPzREY5/xPN2kf2VBGISYj8XG9yFVy7w+DovdLVTGtRkzgCVLvFnR7Vw0VRfbVvA5+Z2eMuiFspsqsOzp0NRkHySu4mZTTfVrHBAxHxZOYl4Vr9UwvaJS0bKuLpjctf39dGxVa6dxwK4E+sk7kSgJLyf6+kqDdDxOKUCffRZ47TUacHbvdt6hcJPhYvduEm5m2YnK7VtBbbmqZrTZtUttYcyTpl8xAiqLXis4o1BPj/NnzUS0H5NNsaie59uPZy2bVbPE1tWp7VjwItI4VrG/bSWyUlgVjGK4bXpRrirYNK16xLzVtXWzgxOk9dNYtVglK4yx6JWbcS0SKd9KHYSY1/+On4RluVYZqzmbXHOzs5h3gucIscwLAJwHNLcDciQSXloyleMEVTiqr8+dZaPcAg9+RKzrJ2/VDDOaRsGoeqtuayttWf/5zxQQq7JDkUiUBjIn2F3FOOGwxbUc/+KggqESCZpM7fpasUi+583N6r/rx0DtNZONnqYmYOtW52vf3z/+vpml0POCqrgGSlkxyondUbGOAvQcqOxY8LNnFPM8hlTCMm9VMIphMc8iRdPUBZvfdRLKoafH3ODjZkwO0vppTJOpsitktMoG6QZkJBqdOPcWCv6kf4zF/E8dHETlXjNULfOaRuMG7xiZ4SYTlIh5AUDJ986KwUF3D2hDQ3gZbVSqrwZlEd+xw52l0+k625FOA/fe674SpxGjZV5FzKfTdP2M13nGDBJuf/kL/a6KmFc5XqEAbNxoLnjd5oY2I+iBz07A9Peb7zjY4YdlnieNcib6lpZS++3o7Z2YNcSPKoUsVlTcbJwCbwcHnc9DVcxzwTCnfmVX8CoadZfH3y+4b1kZJdjtgQ06fE1VM5t5qfrsN8UiLbbMFrJuxHy5wZ12GLO4cL+1O56xdgkvdoMK8tTD6Sn1lFv9lWlo8F/Mq9TJKRezYHEz+Fni+ACr8V3FMs+Im40AgB4+O+u72wehsbGU9ipICoWJFmMzEgkSo37mYh0dpcnXjZhna6EXq/KWLcCGDZQFpRz4+FyEKZdznsyGh82zykQiwPz5pdSgTpYPHrxUfMrNUlIC/gSFBinm43F7V5Q9e6yzapjhV3lzP3ammpqoL9hZoXlnQt9XzFLoecFNrIPdoq9YBP70J+D55+1/Q1WcNDXRc+V0jfXPnpHGRjUXJr9R3XXl582NKwfviFYqSw8zOkr9z+yZc7ODY5ZW1C+MgYwq4szoMx+kT78Rs1zzfrkvNjaS5vBznPbL/ccON2I+Eiml+LSaD1Ut834khQgBEfNhYJbiiuHc2W7S+CWT4QR0cbChaiChn0EwXPnVjbuE12CVYpECTgcGyKWlHNcB40OvErzHabTM/Grr64H99gPmzHE+ttHKZ0VPj7Wl34+g0NHR4CxsjY20K2V1j3p6SkGTKnDhqHLZvbv8IlksZOwqnnIKU/2xynUvY9xY/uzyVW/bRs+R0+6hinUUKLmPOYl5u/GHBUzYGW2GhtR8p/mZdZMJiv3AK+0CYOdi5qYyN2cBCwJjcTWVOSISGZ8nP5MZX104SHiXVT+W+7UzwM+TX37zbmJtykHVBZRTQzsVtFQ1hvo1vgaMiPkwMEtxxXDlNLduNmGI+cFB9awgfqb4A2hgd+t3bQxYUmXXLrJ+z5tHYrCcAjPDw+OtSyrpInmAspokEgl3OxROA8/WrfZ5r8tdmLkprOKWZNI6Naum0X10k8q0vr58qzoXzCnHX55JJun+WGGWArC+nq5JuRZaFisq1lGrlG2aBvztb7QwHhy070eqi25+Lpzid0ZGrJ8hzmgTdhCsyq6r3vfdjfXVyfIYFsPD1mO1ah2EYpH6S1Bi3ljvJZdTF+X8nTBdLczurZ9uNpmMf66xXjSMF1hnOM3vAwN0/Th41UrMOxUN0x+3EsHzLhExHwZsMTXrhLy17WYQ404adHpK3sJ16vDxuP+W+b4+91uuXG3X7aC7YQMNSFOn0uCpWonTDGOea5V0kYOD/ll7nBYPo6NkOTVzsQH8id53u9PkBrs0gwMDtAh04y/P1s1yXNa4YE65lnmA/Ob7+qzvIS/89M+kX+nTvGTVMh5z+3Z6nubOdU6h66a9iYSzm4xdWs1Egs4v7IBRu4JRjD4LFfdFFZFhlgmnEtgVS1OtoGmVichveFxzE7Cpz2YTFnxvjWLej50BHuNVBWoqBbzwgvVuqJtYm3JQ0RnF4sTCXlbPRyaj1gfYWFLliJgPg2jUeqvRKQ+xFZFI8MFPqoKaRbRfg52mkShwm+bPS+nl4WHg1VeBKVPo342NFBzqFTMx399vbzXds8cfIcjHs1s87NxJbXQSvF7vpaYFU/2V4YWxmUjcs4eO7TbOwk2ZcDP8yGTDNDfT71ntDpmJUb+qwHq5BvrvaBrw979TOzo66L924tlNwGMySW47dnE5dsKZjxOmhY13K52ehUSiJIjdXBO+73ZuWWGwZ4/1Oar2zdFROvewxLxqJVeg1PZyCza5gV189CLSz52BSER9YbtrF4n5nTvN37cLPPcTFRdQYyrYujrrZz6TUbufsdj4tKZVioj5MHCyzHtJ45dMlmdBVmHXLnfCyC/L/MgITcxu3CWA0qLJzaC3aROJ344O+nd7O2W08bLrYVbtkf0Tra5NoUDH90vMs5XPbPFQLJLYikadt2q93kvecg0ySMwqNSuLGjc7On7sKvmRyYaJRuneWYn5vr6JgsfLItYML2JFP7Hu3AmsX09ZmFiQ2j1HqtU0gVJRLSsBwtUenephhJnRRtXazLtD6bT7fphM0hhWKTTNvlia6m4pp9QNUszrg91HR9X6nj6tdBhBnkb0VmU/dwYSCXV30oEBSve7ebP5+365/zih4s5rDOK3q72STruLD6ryjDYi5sPAzpfbq4hobKROGtTWXzpNE7Eba6NfYp6DX92K+bo6EqyqK+h8Hli3jo7DArClhc7bygphh9kui1O6yNFR6zLoXrDLNb9tG+06dHfb/0Y5GV6CKhilxyw1qxd/ecCfGAG/3d0aGsz95jWNxLyxr/hlmXfrHmXMb79uHV1HDlqvr7cXDG6so06Vr9NpZzEYdkYbq7z3RvQLSs7EoUpbGxldwqoIbsQukw0w0VfdCs5EFKTlW+/77EbIsaBWXQD4RSw2Xoj6mcudxbxKsoeeHrp/r71mPk6GFRisUuSPdwn4mbMzbqm62QCVzxilgIj5MLCzTpQj5oMMgh0cdFfRMhr1bwt7YMC7pTMSURc127aRO8+0aaXX6urouHZBiFaYVXt0EvNm2UnKwep4mkZiq1BwvqflFAELw/eVU7PqF21DQ/RaS4u73/LDRaynx7/7B9A59PZOvIejo+bZpXjnr5xzKBbJau0mdicWKz3zu3bRZK9fKHLmIauJ0I044h0LKytbKuXst9vQQN8Py8LGbXJasHBK2VTK3QIHoL4yNBRe3REjHJDtZPRREfNBw1lJ2LCmsnBgyzy7vIRpmTe6TPq5M9DYWFo82lEsUt/q7ibxb5a6OewMUU5uNoVC6d5yrIyx/7HRL8zFWcCImA8DDhYzsxh7za3b0BBsQNfgoHW6RDNUc8Cq0NtbnoVGdbJev54GaeM5trfTlqLbQcps8mZrgpWl2y4ThBc4C4JxkN61C3j9dWerPFBe9L6b1HpeMUvN2tfnbTeH8SqEVWsxuIH95o2FXUZG7HdxyhGpHMTr5jz0/eTll6l9+lgMdo0x6/vForp1lIlGrYvdqOTIZwFj1bd7evwNdHMqGMVwADOP526enbo6+v3t2723sxyGhtQW707P19BQ8JZdDmR049rKNWLCrP7KxOPjK5j6uZjgjHgqmdaGhui5rquj4HYjQRb7MsPJMq/HLMUnQPdfL/onASLmw8RMzKtkOzBDxSe1HNxmWCnHmquHg1+9ijJVy3xfHw1Meqs809ZGrj5uYxKsrBzGQCY9fgfksaXZeLyXXx7vAmEH+/B6CfjhUtpBDu5mqVl7e8vbpvdqXVK1TLqBfTSNLirDw/bCqRwxr5qGVg9Xfu7poToN06ePf59dY8wW+arVX42/t3OnuaXfrmAUY2UAKRSAv/4V+PWvgcce86/4nRtrcyRScllxK9haW8n4EHQRQTOGh52f9UjE+fnidIJBwi51bEBR6XvswjY6GryRwoheiLJByK/FBGfLcZp/9Dv0nZ0Un2HcHRseDk8UO7mAGp85/a6XnlxOxLxQBmbiyC6dmhN2lqpy6elx1676+pK/WjkMDdE1cZvJhqmrU5tEN26k45hldYnFSosKN1gd1+j7qKe/P5gBRS/me3vJBaKrS+275WR4CSN9m1lq1jff9C6oy6nw52cmGz2JxMT+xxOvlXgq59oPDrp3beN+8re/Udva2ye+n8+bL/K9iPmmplIhOyMq988sJd/wMPCHP9AfQOfy0kvqbbLD7a7r4KC3eJP2dnLHqESF2z17nO+hU9Eddp8KOpONVzGfz9N3wsjYokfvMsmuQX4eX6UGClehjUapnw0O0lirpxwN4xberbBicHD8NWIXRGP/y+fVU8DWCCLmw8RoOeOgJ68PKPuk+g37ybkR1LzSL1fMeQ1+ZVSqtWUyZKlua7MWRq2tZLl3Y+3iynNGGhqss2j47aIBTBykX32V2mYUW1ZwQJ6Xe5lOh7PlWldXWsiOjNB1dOsvz5SzqzQ0VJrs/KSlhbIq6e9Bf7+1OFRdxFrR3+/+vrE4clooml1bL+5Y7LZj9nuqVYf1mZDefBP4/e/JKj97NjBzJmW1euopuvbl4kagxmLUh70INnatC9tvXtPUxq/6entrKmfyCcsyPzSkLuTYMj80VBk3G3aZDCKxQF2dcyG2PXtKY04kQvf61VfHB876uWPghJM7r5WbmpllPohxu4KImA8To5gvN1gwmaTO61clN4b9Z93m62a/z3LgnOxeHzIVMb9lC7nQmLnYMB0dJBbdWLusJu9EomT51MN5uP0MnuTjcQ2CgQFauNidq5FyMryEteXKeccBmnAGB9VciMwoJ0ZgYCCYxUtLC7VJv/NmV4+g3JLju3e7X1TGYqU+bLVQNMs8BHizzPMYYyZAVH3NGxvp2f/rX4F77qHne//9S2PdtGk08f/5z+UHZboR8/F4yQLrRbA1NoafonJoiMYZJ8OLU99ksRq0mNdb2VWFHFt2h4fDd8vgcYVz8Pud/rGhwTk9pTE99dSptNDlZ5qNPmHtWNh5AFhVEWYXNj3iMy94JhqdKI6MaZTcwoFybnIn9/ebB7HoYT85t8FwTjlgVejtLW/AisXs26BpZFmIxeyPw9Yu1RSVxSLdC7MJySrDjN+ZbPTH40XR+vXUPzo71b9fToaXsLZcGxvpWOk0CV5N895v2HKokqbNyO7d/t8/oGSV48mWRazVM1lOlcJslvqIWzEfj1P7urqsFzSNjfQZs4Wsl8nUqlieqnBubKQx5g9/oM8vWDCxDfPmAW+8ATz9tPeUdKoFoxjeDfNq/a1Eikou0uYk5jkGxyoWIYwc84D7yqdAaQEQRoCuGRxvFYRlntNbW+0+j47S+3oxn0zS61u20L+5rkhYbjZ2haO4LcZrFItNfC7EzUbwjNlWo0oGBjtiMRIgbvzm33iDrE52A9rgoPstKM7YU46YLxZp1e/VXx4oWQutBqjduylYTMV/vKmJrpfKhJ7JWE9ITmLeb4sU55rfs4d8gDs7vU1EXu5lWFuunNGGfTjLEdQqlQXNyOfp2fPbTUrfLnb34EBbq77CwaheYD90L5b5Qw8tFVwzg4NgjeON12DdhoaJC+xCgc5d5TlqbaX2zJ5tvVsVi9H7zz9PLkRecLvryoF6Xrf+K5GikvOUO7WXBbHVPefg0rBcNdwEOLNhI4zUmWbU15fSqfotPnmesNICVump29vpueAFa5iBwXZF/qzqOuh3qplczjlgvsaYPGdS7VhZ5svtUPX17rKuvPkm/b3xhvVn9u71boUot/jO0JB3dwnAeeLYupUeepVjtLfT5Kiy82FWMIphsWgUWyMjwRRK4cXD3/5GbgRTp3r7HbfilgfZMKw08Tgda/du+iunz3itAhtU8CvT0kJ5nTloL5OxPhYvYr0EoPMOh5cFkdPYxfUwjJYxr2I+maTnUf99N0aR+npgv/2cDQYtLXQ9nnjCW5IB1YJRDPdBr1QiReWbb6oZXpyKmrktlFUOXndawiiKZAYL0SDSPzY20u9aGQEGBsw9B6ZMoXll+/ZwigTqsTO8WC2g4/GSmxRTicxPASNiPizMxLwfq/3m5tKE70QqRQ9hXR3w979bf2fXLu8CpRwx39/v3lffiF213UKBcq2rBko2NdFAp+JqY1YwiuFB2Hi/g6oRwC4aW7eW8gO7pa7OvdsGu42FMbBHIvS3dSsJRa/Br4B3y7yXdI5uYL/5vXudfXbLKTnOQjsIKxXv2Bn7ejli3lgJVqVglBdmziSXnMcfdy+03T4LbJkvB05RWW5GMRU46FxlEa1imQ9LKNfVUVvc9vUwdw70cLyVn/UPGN51sLLMm7mzAdSnNY0ywrEvf5ipKQsFc53BuwTG+6QPJGZEzAueYZ9y/erQD4tEczMNrFYPnp49e2hS3W8/2r7fvHniZzIZ+i0vglpfEdILXHa5HFHBAUtmE0dPD/3ZuQXoiURoIFAJLDNWnjPDeG327Akm6IsF1K5d6ukojXgpAsaDaZj+k37kf+YFoBcxH+RWLedF37PH+blyEkx27N0b7GRs5ueeSpVXLM8o5oPwuY5EgPnzKYf+X//q7rssHFTHd+6D5cwHnKKyt9f7b6jS10fjg8oi2qlv9veHH0Dptr+HnZaS4UVeObvlTliNLTt2WBsqpkyh2Lve3srsWFi52Zi1xayQYhgL3pARMR8W0SgNaMYS9OWu9nkbW2UreM8eakNjI7XnlVcmbjuytdGLmC+3cNTu3eUPmHYTx7Zt9q4KZrS303aik5hy2mUxlubWNLpnQWVwiMfJUldOUKhbMc8BSGFZsDiAq1wRxxOA212lvr7gLVKxGD0XfX32z4bX3QVNo52ncnbDnDBLoeulOBJQulf6jDZ+uCtakUhQzMlLL7nbSfVi1CgUyhsP2L0uDL/5vj4yGKg862xcsOqbYeSYZ+rr6T666XtciLBSlvlslq5REGNNfb25duCgeKtxob3dW2FFv7ByszGDDalGy7xXl6sqpQK9cx+F03NlsyXfVL8yf9TV0Qr5gAPsP7dtW2my6O4mi/OOHbSdzAwNeQ/KVLHM9/XRIoJTQ+n/yqn8yvA2nFHMF4vkYuPWt5rzze/cCSxaZP05p61io5gfHfUWdKjK/PnlfZ+t3sWiukhKp8NN95VMUlaFGTP8+T23Yr4cdzRVmprIlaiuzv5YbCxwa5nn4NSgxfzeveOtm6Oj5S009Sljgw5O7OykGKPt24GFC50/XyjQmOF2LFu4sHzBmEzSuH7ooeX9jhNvvul+7jLrmxxLFHRaSobFvJu2c4a0SlnmOfg1iOM3NJSqZ+vnr4EBekatdnbr6uiejYyEb5mvqzP38x8eNn9+OIuR3lUpm51Uwa+AWObDw2iZLxap8/kh5puaaHC1W2lmMiRIeVs0maTX1q8f/zm2rHt5QDko0U5QbNoErFkDPPcc8OKLwLp11IaNG+nauEmhaIdxG233bhIAbn8/GqWHfts2+88NDNgPtpw5gC0KIyPBpKX0Cy+W3iCCtOxobiYLkWoxLDtUSs7rYb/tIEUwQItJ9pm16ys8YbkV814z2bjBLAi2HDHf1EQLKU4lGnQAZTRais9QgYOy3Y41DQ3li/n2dhrng0xRmcnQ9Xcbp2LWN+1ijYIgFqNjurnO/J1KiHnu10G5+TQ0lFJf6uGgeLv7wjnnw9pVYayqwPb327dFv+jPZETM+8n8+fMRiUQm/H3yk5+sZLOCgX25WWT6mZ+1uZk6sp1bRF8fLR70A/C0aZRiSu/P2tPjfdBQyQqyeTNNOAsXku/+ggWU13nuXEoH59dWpnHi2LGD2uVFtLS10WLDTig5bRUb01MOD4ebn9ctXjK8sLtDWNTVUZ/xYyfAbbyHVdo2v2EhrNp33Yr5wcFggkf1sJ87j0+c2cTrs85BsPx7TgtpP+joIOu8yi6AF3c+v+DaI0G6P5jNJSqY9U0WkmG62bj1mY9G3S8A/CYoMd/YSNfDOPaxG5vdIrm5mcb7cjKJecFsrNY0+8Jx0eh4fZROV/Z+BkBFxfwzzzyDHTt2jP099NBDAIBzzz23ks0KBqNl3i6VoVs464pdCsU9eyZO2uz3xmkqi0VvlSAZp8JRQ0O0pdfa6u333aCfOIpFsv57deFx8g/M5523is3EPFCZ4CEVvFjmwyzr7TduYwTCEMFAKWuPqmuA1yDeIOFdA7YWl+s20NhIfY1/L4xCZTwGcN5/K/J5GmvKya5UDnV1NNcEmaJyzx73hoho1DwjC2ciCsvqzbtbbqubV8rNho8f1GKCd9ON4njXLrX7u3gxBcOGCVdL1icTsavzwt8xxtlMooJRQIV95qcZinbccMMNWLhwIVasWFGhFgWIcRtclxM1Xyhg9Z13Yu26dVi+dCmuOvdcxKJRy9cnEI2WAirnzTM//o4dEweDSIQmqXXrgKVLS/msva60WQBaifneXhJMVsVa/MLoMsFZbLzmW6+vp4Fjxw5gzpyJ7/O9bG62vmfsy88T2uBgWdt8yn3DK5xdw41l3s4y4pHAz5Opr6e+r5pPWj8xKOL5XKZOpeM5tSsScS/md+0Kx9UrGi0ZG1jMexUnPN4NDACzZk1wVwykz7CrzZYttKNoxa5dNNbo45CCbJcZ+hSVQQjQnTvd/y7HjBlxyPrjZW60vc719a7iCfKFAlY/+CDWvvAClr/2WiD3zLFfsFuJotuWq37Gc5DeB71QIKOeR+NX4P2cFzfpdKmNPAdbtZmTc/D4Pgl95qvGjJbNZvGLX/wCn//85xGxeLAzmQwyuslqMMzS1X7BlnkOFozFsPpXv8Kq226Dpml4+IUXAADXfPCDWH3nnaavm5JIkDXm8MPNj7ltm7m1aOpUssxv3kwiPpXyns6QFyxWgmL37mCKJBlhH0dmx47yXSKamymo7aijJg4CugIxjveMB83e3rJElKu+4QV+Bt2Iw+Fh38VD4OfJcKCZqv/u7t2u75/nc+noUEun6rYKbKFABoCgXYWA8RltuLhVOZbGujpqO1t2decQWJ9pb6ex8phjrHcv33zTsg+F1pfb2mgusFhUlIXdXGKHlZh3yJ9udc3srqWf13n1nXdi1R130G+9+mpZv2V7DLv2JhKuFlCuzz8SGR9jwS6Eqimcyz2+W+rrqY2ZzEQxb2eZT6fpO+z2V6u7yBZUzdLk7rvvRn9/Pz760Y9afub6669HW1vb2N8cMytptaMX82+xdt06aG9tdWuahrXr1tm+bkpzM1mFzMSXXU7gWIwGi7//nbaR31pglIWZNVfTSguGoNFPHOxiU+5x29vpOprlcNa5TNnes2iUBqF8nq51GWLeVd8oB1XLPJc899ndIbTzdONWlM+TUHLpjhb4ufDugirDwyT+w/Dtbmwspb0t1zIPkHjfudO00mpg19nJ1SaXo7Gmrc307dD6MqczDCJF5d696vnl9XB2LKNLl0O8g5e50c/rHMY9czxGRwftBimKeddtTiTIdYoZGCirGF7g14wNL/q5KZWyd93T55rnTHqTzM2masT8T37yE5x66qmYaWNJuPLKKzEwMDD2t1U1u0A1YSLmly9dOrYbEYlEsHzpUtvXTWluLlWLNNLXV1qRmjF9OmVq2LjRHx9uMwHY30/tCMNfXi/me3u9ZZYwkkzSQGBWDTaVGstzbXvPOD2lD5lsXPUNr7jJ8BJQ9ddQzhMoxXuoiPmhIU+1GAI/FyvrpxVsgQtDzOuDVrPZ8vPCJ5PU/r6+CbFHgV1nXnxs2WL+/s6dNN5YjDWh9WWAxPYLL6jVH3GD01xiBbvtGStvOiQO8DI3+nmdw7hnjseIRl1ZyV23ubGxVDcAKLsYXijjXKEwfqx2mqe4+NYkFvNVsc+wefNmPPzww/j1r39t+7lEIoFEWCmsgkAvjoaGxjrTVW8F/Op9zOxeN4VXnn19lENez65d9lawhgbq3P395U/svAVmpLeXFht+b/uaEYvRg1ss+uNiwzQ20oJn2bLxix6dS4/tPUskaPLitF/Tp3tuiqu+4RU3GV4ymfJdJ0wI5TwB53gPPWxhdtmXAz8X7veqExVP2mFMajw+ceBwuSSTtDDmFJW6cwj0OnNWGzNXmzfftK2AHFpfBqj2wmuvAX/+M3Dyyf7tmO3a5U3ksQuYfuFVKNA8aNM2L3Ojn9c5jHvm9zFc/15DA92HkRFaBPb2ljWOh9bPjZZ5O7iYJIt5Lp45iagKMX/TTTehq6sLp59+eqWbEix6X25dBoZYNGrqU2b1uiXR6PhiKgANmFu3OruZdHWRxalcsW2VFYQngTCyt+irwPrhYsNwDueBgfG5zYeHxyY423uWSNDCoqenbHcm133DC24yvDj5LHoklPME6P4Vi2r5uT1argI/F866kc2qTVRBlog3g9PH+RF4xqlT9Wl13yLQ69zeTgv6HTvGB8Jms1SUzqbmQWh9GaD7umABFeibOhU49tjy73WxSAsWL+OpfkxmP2euu2ETaOllbvTzOodxz/w+huvf48JRnPyizIrQofVzvWV+eNjZKMFZwXK5CQaAyUDF3WyKxSJuuukmXHTRRYhNsoCECUSj4y3zfmcaaG6mwZa3ywCasAcHnX0c29ooZ7fHoJcxOPJe7xtZKJC/fFjp2nhLd/t2WkSUe04MuzIZU1SqliPn9JQ9PbVRSlqf4cUJtgjX8jMcj6sVBurrq86JgPu9aq75ctLQeiEeJ9HgNhe+HfqxLgy4fxv7yc6d5HfsV9E7P4jHaZf2mWcoeL9c+vvV5hIz6utJzOsFWNgFowRzeFdyZITG+6GhcILiyyESGe9SqDIHRyJ0jmyZr8YxvAwqLuYffvhhbNmyBZdcckmlmxI87NPKwRt+50ZubqbBVp82b88e9YIzHR3lW83Y91g/Yff10UQQhr88ULICbd5M19trfnkjnMPZ6DOrKubZb29kpHqLRenhQCMVtwg3KSyrlfZ2WgzbZYTRNBJu1bhFy/1exe8/k6FnMsxJu7GRFrIqVjQV2D0g7Pzf7Gqj7/NbttBitlK5yK1ob6c2/fnP5fvP79lDz4aXPsN1VvTzgp+1VoTyGR4uBb9Wu5g3BvurjAP19XR+k9RnvuJi/qSTToKmadh///0r3ZTgicVoAuBgQb8FHQeZ6YNgd+8uFZ4JA7NI897ecAcIDpDZtcs/Ic+0t5NVjt2lMhnnstcM34NUKpzc3uXixo/cbX7zaqS1lRbDdllAUqnqtVzpXRmcYL//MM8jmaQJeM8e/4rlqS6k/aS9ncZYLsyUyZDl268dQL+ZNYsWUX/+s3XfGB0llxy7yrG9vd5dJY11VviY5QZCC/4QjdLifmCgNnZYOW88UNIbTnMwF44SNxuhbNg6wRkd/LZI8KDIaaaKRRKeYVYjNBOAZgWrgoRFTV+f/xNsWxsNepzVhnPXqgoKDoKuJTGvItRHR6u3mq0qXIzILGMRwxlgqlHMR6P0zKuI+aEh9UWoXzQ2lqyxfowHjY0kqsMW80ZXmx07aMy18ZevKHr/+b/8peQ2x339z38GfvUr4He/A+6/37z/axqdb7nGEaNlXqgOGhtpsbZ3b20srjjVabFYihNy0lOJRCmTnGpxwBqiBu7aJIJF5tBQcNX5GhvJVQAorbTDyO3OsG8ki/lcjragw3KxAegh1TR62P0+d57I2SrHATWqgiIWo/tfK2LeuMtiRQAFoypCaysFOOpLhevhbCzV7CalapkHwp3QeGywywfthsZGKiVfCRGtd7XZvJleq+b+H49ThptnniFR/9prwO9/D9x1F/DEE/SZ/fcnMffwwxMt9IOD9F65hiF93xwcnHTW0ZolkaB5afv26jRUGNGnEjapNWEKu7nWYrFRBUTMhwmL+TLzuNrS3ExWotFRskz76TOuAgtpFoB79tD5hinmARJjQZ13SwsJvlyuJOZVJ/JEgq5HLQR9OVX01aPLzlTTtLXRc6MvoqLHJHtK1aFyv3p7KyM+IxH/UphGIhS0X4nzYFebN96gv2p1sdHT1kbX6pFHSMhv2kSLoQMOAKZNI2G9YAG55Dz00PjMaH19ZNUsZ0yNRMb3zYGB2hgH9wUaG2nOHhysznggI5zNSu+27DQOsAuwaoa2GkPEfJiwL3eQnUlfPIoH40psJ7GY7+mhBy3sQfuAA8hXNAg6Omhy6+lxv1Xc1QUsXFgbW5mMk2W+WKRFYzVbJlXhSc3Kd7inp/p3VZws85oWfiYbhre6q90n1wlu/2uv0VhbrS42RmbNojliv/1IuBvFeV0dvbd7Nwl6rnjd20vPeTnjVjRaykCiaZWJdxDMSSRoLgvb+OcVvQsoz8FOOocXAHYJDmqYGlIUkwD2mR8eDk5g81b2nj1q+eWDgPO5AsC2bZUReUHmtOcCOFxO3g2xWPi7FOXiZOnl7EWTQcwDdH/ZdUJPPk9ivpotV3rBZMXIiPesJOXS2EjWv1oX8wAJ+J4eGmdq5XwiETJG2LW3ro4MDjt2kKDfs4dcN8sVefoKxW5jjYRg4XihanchZDgNL1vmVdIns9dALaSF9oCI+TCJRskyH5S/PFNfT1uofvg4eoH9wtNp8sGrNfGqQlMTZbDo76+didwL0ahzFVjVbc5aob2dhIzxvIeGaPFWzZYrY8o2M4aGSFRVYlHS3k7uHpPBvaKjg/rJlCmVbon/sKDfvh148EES9OUahvRiXtXPWQiPMLPelQu3M5Nxn+q2WKyd83SBiPkw4Q4U9Oq3pYWE/PBwZYQHB9P09lbGXz4M2tvp/Hp6JveEpCIOg0q1WilaWqjfmgUBVntaUb1gsmJw0L8gVLfU1wPz59eWm5kVsRhw+OG14S/vhWiUBP22bTTWlSvm6+vp+WG3vExmcizqJgvz5tFfLcF+/qpzTzTqXzatKmMSjKg1SNAuCU1NJQFWiUmTBeDu3ZUTDUHT1ESuCpO9gmF9vXOMRyZD93myDJDRKC28d+wY//rAQPXnxdYLJiv0ReUEwY5oFFi0iPzoy32+2TWCEwdMwlzfNU08XlsGGU7z7Cb2IpGgheQk7HdVPCtNYoLeXmxsJPePSrkDcNqoN96obv/icohE6B4ODdXWAOiWeJwGzHze+jOTMW9vayu5qunPe+/e6p8EOGOWXdXe3bure3dBqC6iUX/GcY7nymadd48EwYlYjMbkdFrdYBiP00Ky2sdxD4iYrwRBi/lIBDjwQMorXAk4anzv3snpYsN0dtZGdpNyUCkcNRmqvxppb6eMRZzNgwvsVPvilO+XVUabfJ7OqdrPQ5h88EIzk6Fdzcm0+BfCp76ejJZu9FQ8LpZ5wSeiUVpJBm3Njccr5w7AlvmhocoE4IZFWxtw0EGT383GqXDUZKzkyBmL2G9+dJT6czUHvwLjBZMZHMRbC4VhhMkFu9lksyTCJvO4KQQPGw3dinmxzAu+wAEYk7AzjcHWwX3BJ3IyW+UBNcv8ZKn+aqSxkYqDAZXNAOMGvWAyY9eu2jgPYfLBdVayWckxL5QPz01uizbm85Ny3p4kEWs1REuLdan4yUShQG4oQm3DE7CdZX5oaHKK+fZ2Er+DgyQ+aiFjj14wGdE0KnJUX1/dQbzC5GZ4mKyjYpkXyqG+ngwTbpISRKPAEUcE264KIWI+bKZMmZx5iY0sXVrpFgh+YmWZ17TJa5lvbiY/+V27SMzXko+v2f3q7aXiP9Omhd8eQWD6+6l/iquXUA5smRcAiJuNIAhOaJq1mGeXjsko5rmK8PbtlAGmliyJZpb5LVso8LASVaEFgRkclIJRQvnU19O8VEtGlgARy7wgCPbU1VmnkuOCUZPVB7u9nVJUalptWRKNYj6XA155hYK2BaFSRCLu/ZwFwYy6OhrnJnPGPBeIZV4QBHsaG4HNm80FfSYzuSfmtjZyC6ilDDDR6MQMQ9u3UxrVfcHFT6heONuSWFMFP+juFrfBtxAxLwiCPTNmkK/1889PfC+dnrxuNkAp/dnoaO1kQIjFShWgmTfeoOxS4togVBL2cxYxL/jBtGm1Y2QJGBHzgiDYE42SoP/rX8nvWk8m4y6bQC3S1kbio1bOMRYbv4syNARs2CBWeaHycN+MiYevIPhJjcxOgiBUlLY2suw++eR4Fw67lJWThe5uYPHiSrdCHRZMmkb/3rqVXIXa2yvZKkEopROspWByQagBRMwLgqDG7NkUDPrcc6XX7IpJCZWBXRny+VJu+YaG2tlZECYvsRhlVBIxLwi+IqO7IAhqxGIT3W2Ghyd/ld9aQ18FdvduYNs2YOrUSrdKEMQyLwgBIWJeEAR12tupwuhTT5GLzWQtGFXLcMaQTIYWXakU0NRU6VYJAgUrLlkitQ4EwWdEzAuC4I45c8jd5vnnqQCMZEipLurrScwPDwOvviq55YXqQhaWguA7IuYFQXBHLAZMn05iPpMRy3y1wZb5jRvJzUay2AiCIExqRMwLguCejg7yy967V8R8tRGJUODrnj30/3J/BEEQJjUi5gVB8MbcueRiI9vm1cmePWKVFwRB2AcQMS8IgjdiMRL0ks2mOunvF395QRCEfQApwyYIgjDZ6Oioraq1giAIgmdEzAuCIEw2pk2rdAsEQRCEkBCzjSAIgiAIgiDUKCLmBUEQBEEQBKFGETEvCIIgCIIgCDWKiHlBEARBEARBqFFEzAuCIAiCIAhCjSJiXhAEQRAEQRBqFBHzgiAIgiAIglCjiJgXBEEQBEEQhBpFxLwgCIIgCIIg1Cgi5gVBEARBEAShRhExLwiCIAiCIAg1ioh5QRAEQRAEQahRRMwLgiAIgiAIQo0iYl4QBEEQBEEQahQR84IgCIIgCIJQo4iYFwRBEARBEIQaxZOY37hxo9/tEARBEARBEATBJZ7E/KJFi7By5Ur84he/QDqd9rtNgiAIgiAIgiAo4EnMv/DCCzj88MPxL//yL+ju7sbHP/5xPP300363TRAEQRAEQRAEGzyJ+YMPPhjf/va3sW3bNtx0003YuXMnli9fjoMOOgjf/va30dPT43c7BUEQBEEQBEEwUFYAbCwWw3vf+17ccccd+I//+A9s2LABV1xxBWbPno0LL7wQO3bs8KudgiAIgiAIgiAYKEvMP/vss/jEJz6BGTNm4Nvf/jauuOIKbNiwAX/84x+xbds2nHXWWX61UxAEQRAEQRAEAzEvX/r2t7+Nm266Ca+++ipOO+00/OxnP8Npp52GujpaGyxYsAD/+7//iwMPPNDXxgqCIAiCIAiCUMKTmP/BD36ASy65BBdffDG6u7tNPzN37lz85Cc/KatxgiAIgiAIgiBY40nMP/TQQ5g7d+6YJZ7RNA1bt27F3LlzEY/HcdFFF/nSSEEQBEEQBEEQJuLJZ37hwoXo7e2d8HpfXx8WLFhQdqMEQRAEQRAEQXDGk5jXNM309eHhYTQ0NJTVIEEQBEEQBEEQ1HDlZvP5z38eABCJRHDNNdcgmUyOvVcoFPDUU0/hsMMO87WBgiAIgiAIgiCY40rMP//88wDIMv/SSy8hHo+PvRePx3HooYfiiiuucNWAbdu24Ytf/CLuu+8+pFIp7L///vjJT36CI4880tXvCIIgCIIgCMK+hisx/8gjjwAALr74YnznO99Ba2trWQffu3cvjj/+eKxcuRL33Xcfurq6sGHDBrS3t5f1u4IgCIIgCIKwL+Apm81NN93ky8H/4z/+A3PmzBn3e/Pnz/fltytFvlDA6jvvxNp167B86VJcde65iEWjju9VK1ZtrvS5eGlXWN8Jo81ujxEWfl6XamhbGL9V6eNU+p5Vesz0+/h+PrNhjTNuqfQ9q2Yq3WfdfqcaxrIw5lkv38kXClj9m9/Q61u24KpVqxCLeZLNgaPcqnPOOQc333wzWltbcc4559h+9te//rXSb/7ud7/DySefjHPPPRePPvooZs2ahU984hO47LLLTD+fyWSQyWTG/j04OKja/NBYfeedWHXbbdA0DQ+/8AIA4JoPftDxvWrFqs2VPhcv7QrrO2G02e0xwsLP61INbQvjtyp9nErfs0qPmX4f389nNqxxxi2VvmfVTKX7rNvvVMNYFsY86+U7q++8E6vuugsagIdXrwbicVxzzTWer0GQKGezaWtrQyQSGft/uz9V3njjDfzgBz/A4sWL8cADD+Cf/umfcPnll+NnP/uZ6eevv/76cceZM2eO8rHCYu26dWPZfjRNw9p165Teq1as2lzpc/HSrrC+E0ab3R4jLPy8LtXQtjB+q9LHqfQ9q/SY6ffx/Xxmwxpn3FLpe1bNVLrPuv1ONYxlYcyzXr6zdt06cO5GTdOwdu1ahTOtDMpi/qabbkJLS8vY/9v9qVIsFnHEEUdg9erVOPzww/Hxj38cl112GX7wgx+Yfv7KK6/EwMDA2N/WrVuVjxUWy5cuHVv0RCIRLF+6VOm9asWqzZU+Fy/tCus7YbTZ7THCws/rUg1tC+O3Kn2cSt+zSo+Zfh/fz2c2rHHGLZW+Z9VMpfus2+9Uw1gWxjzr5TvLly5F5K3PRCIRLF++XOFMK0NFnX9mzJiBpYYLvWTJEtx1112mn08kEkgkEmE0zTNXnXsuAIzzvVJ5r1qxanOlz8VLu8L6ThhtdnuMsPDzulRD28L4rUofp9L3rNJjpt/H9/OZDWuccUul71k1U+k+6/Y71TCWhTHPevnOVeeeC2Qy9Po55+Cqq65SPd3QiWhWFaAMHH744WMrFyeee+45pc99+MMfxtatW/HYY4+Nvfa5z30OTz31FB5//HHH7w8ODqKtrQ0DAwNlZ9bxxPbtwB13APPnA/tQgI8gCIIgCMKkZ3AQGBkBzj8faGqqwOHVdK6yZf7ss8/2o13j+NznPofjjjsOq1evxnnnnYenn34aP/zhD/HDH/7Q92MJgiAIgiAIwmRDWcx/+ctf9v3gb3vb2/Cb3/wGV155Ja677josWLAAN954I84//3zfjyUIgiAIgiAIk42KJ8w844wzcMYZZ1S6GYIgCIIgCIJQc3gS84VCAf/5n/+JO+64A1u2bEE2mx33fl9fny+NEwRBEARBEATBGuXUlHquvfZafPvb38Z5552HgYEBfP7zn8c555yDuro6rFq1yucmCoIgCIIgCIJghicxf+utt+JHP/oRrrjiCsRiMXzoQx/Cj3/8Y1xzzTV48skn/W6jIAiCIAiCIAgmeBLzO3fuxLJlywAAzc3NGBgYAED+7/fee69/rRMEQRAEQRAEwRJPYn727NnYsWMHAGDRokV48MEHAQDPPPNM1Rd1EgRBEARBEITJgicx/973vhd/+MMfAACf+cxncPXVV2Px4sW48MILcckll/jaQEEQBEEQBEEQzPGUzeaGG24Y+//3v//9mD17Nh5//HEsWrQI//AP/+Bb4wRBEARBEARBsMaXPPPHHnssjj32WD9+ShAEQRAEQRAERTyJ+Z/97Ge271944YWeGiMIgiAIgiAIgjqexPxnPvOZcf/O5XIYHR1FPB5HMpkUMS8IgiAIgiAIIeApAHbv3r3j/oaHh/Hqq69i+fLluO222/xuoyAIgiAIgiAIJngS82YsXrwYN9xwwwSrvSAIgiAIgiAIweCbmAeAaDSK7du3+/mTgiAIgiAIgiBY4Mln/ne/+924f2uahh07duC73/0ujj/+eF8aJgiCIAiCIAiCPZ7E/Nlnnz3u35FIBNOmTcO73vUufOtb3/KjXYIgCIIgCIIgOOBJzBeLRQBAT08P4vE42trafG2UIAiCIAiCIAjOuPaZ7+/vxyc/+UlMnToV3d3d6OzsRHd3N6688kqMjo4G0UZBEARBEARBEExwZZnv6+vD29/+dmzbtg3nn38+lixZAk3T8PLLL+O///u/8dBDD2Ht2rV44YUX8NRTT+Hyyy8Pqt2CIAiCIAiCsM/jSsxfd911iMfj2LBhA6ZPnz7hvZNOOgkXXHABHnzwQfzXf/2Xrw0VBEEQBEEQBGE8rsT83Xffjf/93/+dIOQBoLu7G1//+tdx2mmn4ctf/jIuuugi3xopCIIgCIIgCMJEXPnM79ixAwcddJDl+wcffDDq6urw5S9/ueyGCYIgCIIgCIJgjysxP3XqVGzatMny/Y0bN6Krq6vcNgmCIAiCIAiCoIArMX/KKafg3//935HNZie8l8lkcPXVV+OUU07xrXGCIAiCIAiCIFjjymf+2muvxVFHHYXFixfjk5/8JA488EAAwLp16/D9738fmUwGP/vZzwJpqCAIgiAIgiAI43El5mfPno0nnngCn/jEJ3DllVdC0zQAVAH2Pe95D7773e9i7ty5gTRUEARBEARBEITxuK4Au2DBAtx3333Yu3cv1q9fDwBYtGgROjs7fW+cIAiCIAiCIAjWuBbzTEdHB44++mg/2yIIgiAIgiAIggtcBcAKgiAIgiAIglA9iJgXBEEQBEEQhBpFxLwgCIIgCIIg1Cgi5gVBEARBEAShRhExLwiCIAiCIAg1ioh5QRAEQRAEQahRRMwLgiAIgiAIQo0iYl4QBEEQBEEQahQR84IgCIIgCIJQo4iYFwRBEARBEIQaRcS8IAiCIAiCINQoIuYFQRAEQRAEoUYRMS8IgiAIgjBZKBSATKbSrRBCRMS8IAiCIAjVSS4H9PRUuhW1xbZtwOuvV7oVQoiImBcEQRAEoTrZu5fEqVia1UmlgPp6QNMq3RIhJETMC4IgCIJQneRyQEcHMDxc6ZbUBvk8EIvRXz5f6dYIISFiXhAEQRCE6oTF/NBQpVtSGwwNAS0tZJnP5SrdGiEkRMwLgiAIglCd5PNAczOQzVa6JbXB4CAtfurrxTLvhqEhYGCg0q3wjIh5QRAEQRCqk2KRXEbq6kScqpDJAPPmiWXeLTt30l+NImJeEARBEITqZepUss6PjFS6JdVNLgdEo8D06UAiIWLeDZoGRCKVboVnRMwLgiAIglC9dHbSn/jN2zM0BLS2lhY/Iub3GUTMC4IgCIJQfRSLZC1NJIA5c4DR0Uq3qLoZGiKrfEMDBcGKmHdHJEJ9rgYRMS8IgiAIQvXBaRYTCbLMA5I73Y50Gpg9m/6/qUliDNxSw3EGIuYFQRAEQag+8nkSWCzmk8ngrPMbNwJvvhnMb4dBLkcLn6lT6d8NDZVtTy1SwxmAYpVugCAIgiAIwgRyORJY8TiJ09ZWciVpagrmWDUq5ABQSsrWVmDKFPp3IlHZ9tQS7M4Vi4llXhAEQRAEwTf0bjZ1deRCEmRGm1p24RkaArq7Sxb5RIIEai2fU1gUCpQFSNxsBEEQhEnJ8HBN518WaphcjsRpNEr/7uoi4SVMJJMp+csDJOZjsdrebQgLrmVQw9dLxLwgCIJgTV8fsHt3pVsh7IvkcuNdajo6yOUmk/H3OIUCWf5rFfaXZxcbgMR8DVuaQ4Xvfw1frxruvYIgCELg5HIkoGo0ZZtQw+TzlC+d6eyklIvDw/4fJxarXbcUo788IGLeDfk87f7UcAYgEfOCIAiCNYUCuTrU6CQn1DD5/HjLfDxOedQHB/0/TixGgq4W3XgGB4EZM8ZnsGE3GxHzzhQKdK3a2mp2nBMxLwiCINgjokCoBJo2MSvLzJn+90UW87XqM53LAbNmjX8tGgUaG+W5VaFYJDebILIkhURFxfyqVasQiUTG/XV3d1eySYIgCIIR2a4XKoVRzHd2kvDyU3TXspjPZsfnl9fT3CzPrQp8/xsbK90Sz1Q8z/xBBx2Ehx9+eOzfUY5aFwRBECoL518WMS9Uinh8/L/1fvPt7f4cI5+nRUOxWHv9fGhoor88I2JeDXYlrOHc/BUX87FYrHat8ZEIWQgGBkqlpkMiXyhg9Z13Yu26dVi+dCmuOvdcxKJRy9e9fsevdvndZsE9Yd3nSh7f73a5/b2wrktozxIX7YnFlDOIVHqc8fM7YfxWpY8f1vjr+rc497dRYDU10Xy7a5crMW/bL3/7W6zdvBnLFy7EVaef7iiMKv2cj2NwEDjgAHMh2txcVuB6GM9yWNi2uVCg65dIlOImqvx8jFRczK9fvx4zZ85EIpHAMcccg9WrV2O//fYz/Wwmk0FGN6EM+h0E45Zp04C3vQ14/nlg715g7lya+EJg9Z13YtVtt0HTNDz8wgsAgGs++EHL171+x692+d1mwT1h3edKHt/vdrn9vbCuS2jPEot5F5b5So8zfn4njN+q9PHDGn9d/1Y+T/3OTKTOng1s3OjL8VffeSdW3XMPNAAPv/QSUCzimn/8R3/PJcjvZLMUR2BGIlFWdp4wnuWwsG0zW+bj8dJYV2NivqI+88cccwx+9rOf4YEHHsCPfvQj7Ny5E8cddxz27Nlj+vnrr78ebW1tY39z5swJucUGYjHg7W8H/uEfgDlzgA0bAIu2+83adeugvfWQapqGtevW2b7u9Tt+tcvvNgOgB27jRkmZp0hY97mSx/e7XW5/L6zr4vuzZAWnpWxvVxbzlR5n/PxOGL/lSKEApFKBHd/3PuPhOKZw7nSjmw1QcilxMfbb9su3PqMBWPvaa55/K/TvZLN0fcz85YGy3UbCeJbDwrbNest8LcZNoMJi/tRTT8X73vc+LFu2DCeeeCLuvfdeAMAtt9xi+vkrr7wSAwMDY39bt24Ns7nWzJ4NnHEGcMIJtBW9fj09ZAGyfOlSRCIRAEAkEsHypUttX/f6Hb/a5XebAZB708AAkE57bu++RFj3uZLH97tdbn8vrOvi+7NkBVvmOzqUhVOlxxk/vxPGbznS2wu8/PI4C2ulx2y/j2MK9z0zQdrZCSSTwOio+Xd7esgNR+H4y5cuReStz0QiESxfsMDdubz1b1ff8avPDg1R/ICZvzxA1y4S8WzwCuNZDgvbNheLEy3zNUbF3Wz0NDU1YdmyZVi/fr3p+4lEAolqDVBIJMjlZs4c4KmnSNDPmjW+4IWPXHXuuQAwzv/L7nWv3/GrXX63GQCJ+JaWmlxFV4Kw7nMlj+93u9z+XljXxfdnyYpcjoS8i+36So8zfn4njN9yJJslocG7JD4f3/c+4+E4pnCGETPLfFsb/Q0Pj59jCwVg0yYS+kNDlJPe4fhXnXsu0NuLtYOD9PqSJWrnomlY+/TTWH7ggaE/52MMDgIHHmh+jYDxlmarz3g4fqj93yds26xpJOLj8Zq1zEc0TXGEDoFMJoOFCxfiYx/7GK655hrHzw8ODqKtrQ0DAwNobW0NoYWK5HLAb39LFhVj7lfBP9avpyj+eJwEhyAI/rJxI7BkCcUD3XMPsP/+lW7Rvscbb5DA6OwMzDhUlWzfThbn97/f/P1HHwWeew5YtIj+PToKbN4MzJ9Pf489pt5fX3sNOPVUcmd65BEKKHUilwO2bCGr7uLFasfxm9deA04+GTj4YPP3+/uB226j+bGGc6gHzmuvASedBCxbBvzf/5G7NMchDA4CIyPA+edX5Bqq6tyKutlcccUVePTRR7Fx40Y89dRTeP/734/BwUFcdNFFlWxW+dTX06Bbg6u7mkLTSMjLdRaEYMjnaSyr1h3RfYF8nizNitmEJg25nP3ipaurVK21pwd4803giCOA008nI5rbaq7sYhGJOH+W21dmgKkv2F2jRKJm3UZCh5OX1Kh2q6ibzZtvvokPfehD6O3txbRp03DsscfiySefxLx58yrZLH9obKzJDlEzsA9gLDYhOEwQBJ/QNBrL4nESR+z6IIRLPE7WwX2JfN7eEtrZSWJ1/Xpa7Lz73WRZjUZpTlDNSqJpJODdGoYq/Szk8+apO/WImFeH72VTU01er4qOyr/61a8qefhgaWyULCtBksmQH2mN+rcJQs3AxVTq6ysvYPZVEglKf7wvUSiQSLeis5PcR6JR4B3voEQUDPuK53LUf+1gUexWzOvTtnJWmTCxCxBm6uroGvb1hdcugNxUdu4EFiywv4fVBI9ryaS7HZ0qoaJuNpOaeLzy22+TmXSaFkwtLTX54AlCzaBP2VaDFquahucQFoz7GnZCtb4eeNe7gDPPHC/k+Xu8+HSCF6gcAKma/UUvpivhAsXHd1pENDWFb/AaHgbmzaOYguHhcI/tlkKBFj3sZlOjLoUi5oMipOJR+yypFAn5jg6xzAtCEOi38cNI2fbqq8Du3cH9fi3CQrOhYd80DjkJq5kzzX3G3RQ602fN4WrHqouApia6N5VIj2xXVEtPa2v4i3AuZHX00cC2bZRCulopFmmcY8t82DssPiFiPihEzAdLKkUVeKshAEkQJiNs+WtoKFkAg1w4F4uUTlAowfegvb3SLQkXvR+7FyIRdd9nFsXxeEnQq/TzXI4MSm1tlbPMc3vtqITbiKbRImL5cuD44ylAOaSCmq5howWLeV4c1ZiuEDEfFCLmg6VQoAmuRlfRglD1sFjgwjPJZHAWvmKRJlNxmRsPC832droH+8r1YWt5OS4Pzc3qYj4aLQl6DvRW+V5zM/nuV0rMq6RKrJTbSCJB1/KYY4AVKyjFo6GQV1VQKJTcrICarQIrYj4o4nHyw9pXBt9K0NLiLpWYIAjqGAPsVMWRF1i81Zg1LHD0lvlEYt+JWcjl/BHzqqK8oaHkN60q5DSNvtfWVpl53il1J1MpMc+Bx3V1wOGHU7ahbJbcbqqJQmGim43q7kwVIWI+KOrr3ee5FdTIZku5/CXQuPaQ+1UbcB5tnuSCFvNsGZ3sgZ5urLh8D3is21dyzev7g1caGtQCWTmPP1DytVedt+PxymVr0bfbDt5ZCyu7Hotj/SIiEgEOOgh4z3uoHdWUmcksALYGg/1FzAcFDwo1trqrCVIpymTDE5zqtqhQefbuBV56qTIBY4I72CeYCTIIUx/oOZn7xvAw8OKL6ueYy5HvMef6n+wLHUYl7aITqt/N5+n6AiQ6GxrUhVwiQa4ulZiDuAaEE2Hnmre7d4sXA/vtR5VpqwV2s+F6BGEE+weAiPmgEJEZHKkUDaDJZM1uie2zDA5SqfVNmypTh2FgAPjrX6UGhArZ7HgxH+R2vT7YdjJbnzMZGrtUxXw2S0aLujq6F/uSmI/Hy6tp4EbM6y3cyaTzfKK3Plcyo43KOVZKzFvl9587l/pxtezQFgrU3rq35DAvRGpMU4iYDwr2vRM3G/9Jp4EpU0rZDmowWGWfJZ2mwXzmTGDz5vCPPzDgzvK2L1MojA+wC1LM5/P0LHd2Tu6KzpmMO3cl/T1oa9t3xLxT9VcVVN1L2PedURHz+nSWyWTlFqHVKObZDdaqbV1ddG9HR8NpjxOFwsS2BhnsHxAi5oPCTSCN4I5sFpg6lf6fYxPkOlc/xSJNrrNmUcXG+vrw05Wl02ThrLGBumLoJzk3BXXcwtbRKVMmt2WegxbdnCPfg7a2faffqmZqscONoUfvm9/Y6GyE07uScPxWmP2Wx1KVmAI3BbT8gOM8rDL6dXbSc14trjaFwsRdhCDjgwJCxHxQRCI1uVVTM3AUv1jma4dUigRbeztZ5485BujtDc8Sq2n0F4/X3EBdMfSTXJAp21jMt7ZWz/Z7ELDbjJv+x2JexT96ssBpH8vBjUVaLzxVapcY/cKnTAnXzcZNTIGbnPt+kM+Pd88zUlcHLFhQPZVhrSzzNaYpRMwHSUODuNn4DecE5oE+Gg2+mI3gDyMjdN/a2ujfhxwCLFtG7jZhPCfpNAmi+vp9x13BK2z5009yQVr4cjmaQNkaO1ljGtwsJrlw0r4o5o2uL15w01/1Fm4Va7fezQYIf9fEbR7+MHcjecFqR3d39WSMKRQmPluNjTVnVBAxHySNjSIy/YYFmX7lX4OraF/QtOqtqmfGyAgN4pw1IBYDjjsOmD0b2LIl+OOPjpYCp6thEqlmzMRCkL63xWIpQ1VDgyy2gIn3oLGxegRQGJQbo6GSYpADWd2KeV58co2TpqZw6524zfbT3BzeM1UoOIv5ri7aoa0GV5ticeI9r8FilCLmg2RfFZlBkkrRZK/3p9xXr/PgIIngatmudCKXo0FcT0sL+c/H41TyO0hGRoBp02gS2VcEkVfMMlKwS1tQ1y4eL4n5yRgEy7sdzc1qVj+jYNvX0lOWK6jq6uia2fVX3unVH0ulervRDaipKdwikdw3VK9RmJZmlV2VRAKYN4/msGrAmDWpUoW2ykDEfJCoFq0Q1EmlKICGrbvAvivmR0ZImNZCwGChQEKmvX3ie7NnA29/O+WgDzLDQTpNOwOqlSGDQNNqI496NktCQT+pRaM0pgV17fh4yWRt9Gm3cLrFzk61TGdmYj6RmPxinov4+CGonOITePdDL+BV0kqzZZ5JJqm9YfVbPn6dooQLW5yqHG/WLLrG1aCRjAu4sAtt+YCI+SBRWeEL7shkSplsmH110TQ6CnR01Ibw0Qe/mnHwwcDSpcCOHcEcn61S7e2V9YfcuBF4/fXqF2RWFTiDDKTjbDlTp05Oyzyn7OvoUKvmmsuNd7OJxyd/Hn7AvT+4HSpi3tjPVdJKG9O2cq75sO6NavVXJiwxz3EeKvEOXV20M1sNO8tGy3wNJtYQMR8kNeh3VfVoGmW80LOvXudisXasmMPDNHBbZTmIRknMA8FYrtk9q729cluo27bRpN/dDQwNVaYNqlhZ/oJI2Wb0W+7srP7FjheyWep77e1qQbC5HC08eRcyEtk3cs37Uf2VSSbtRbkxkBVQdyczxpMkk+HtunGKU1USiXDcgIwLUDva2kjQV4PfvJmbTY0VoxQxHyRimfcX9jk1CsJ9Uczn8zQ410qaxZERYMYM+23h2bMpZeXOncEcv6mJJhC2GoVpnd+zh+7ZihXA9OnVL+az2YmLZoAEhN+CwCiowg4mDAuu/trcrOb7bibYakXMZzLeXebc+oPb4SQque/pxRyLead+bvztMNNTGncGnAhLnLpNmblgQWV34XgnwczNJsxCWz4gYj5IuIPUWIqjqiWdJiFmnOD2RTE/OkqWoGnTKt0SNQoF57ZGo+Ruk836P4iOjJCIZqtRmFaXoSGgr48y9yxeTL6i1b6bYmX5i8f9H8+M1rzm5nCDCcMilyNDRF2dWnYRs3vQ3FwbLoXbtnmv8GxmLfeKipg3uqs4uViwADS2r6OjvHGrUHDX593sXIQlTs0C5+2YPl3N5SwoOD5D3GwEW7g66WSblCoFu0oYJ7j6+poLVimb0VESBpwdppoXjDxgWvnL65k/H5g5E9i1y982ZDLk3gJQHwrL6pLJkLA56ijgsMPoNQ6ArOaJQtPM85oH4aJkFG+c0aYcK2cuV30WbP1uh4qF3cz6Wiu55jlLjBfcBnfa4UXMs8uX1fhg5dNfTsXaVAp47TVg0yb177hZ7IQ15nGQt2rbpk2j8XDv3mDbZQW7+Bkt89Eo3V+xzAsA1AJpVHjzzWBcD2qNdJomQbOcsNUujvyG3VaSyerfDmQXFxUxH49TIamREf8WweyexcWq2EoVtNjL5yngddky4NhjS+JkyhQSrNXuamNmXVOpjukWYxBiUxOJ1nLE/JYt3i3DQaFpJcHX2qr2zBoFY2Nj9Rsuyu0f+Xx5wlhPImGfmSafN18g2WVIs3Il4bzzbu/N6Cj11UWLgrPM8/MVhph3sxCLxciAU6mxsFCY6GbFBBEfFCAi5oPED5HZ20v/rZZ8rJUknZ6YyQag61xjwSplUyiQKAw7JZoXhodJvKgGbO23H1lsuO+XSzo9PpNOGFvOxSLwxht0LpxHn0kmqR9Xu5g3Ewuq/sRuyOdp4cACoL6e+ks5Yr5QqM7dKhaOqhZ2MzFf7XEynNbUKb2jFbmcv2Le7lkvFMyzwjQ2WvdxKzegpib3qUNHR2nhefjhwAEHqH2Hdz3ciHmubxCGmHcTmAvQTixQGQ8GKzcboLIpjD0gYj5I2DLvtUOk0xQ4t2AB/bsaJ6cwKRTIL9HIvmaZ55ztbW0lMV9tLgV6RkdpwFYNakwmgYMOIj9zP/q8PvgVoME7yBSLAO2mTZ8OnHCCuTCZM6d60y/y1rOZWAhiIWTm6uBHMGE1VUvl3SHe7WhosO/bVin+WMxX8+I9laJ2ejWwuA3utIMNPXb9wMwlxK56u5VlnsW8ar/VC/l3vpOMDSpuuV6z/TQ1BT9PWAXO29HVRd+phMHSys0GqLn6NSLmg4R95r10iGKR/OcOPhg49NDqF2xBwxOf2aq/nOtci3DO9rY2EixNTdU9uReL5jsqdixeTAu3vr7yjz88TMJa78MbtJUqnabndsoU8/enTKneIE+7ILZEwv+Fs7EAD0DCxuu10QvnalkwsS+x3jJvt8NhZf1taKh+yzyL+XL6iV+xGSqLTzMxb5fSku+l0Zrb0KDuHmYU8vG4+i6r12w/YViarWJt7GhuJmNPJVJU2rnZOC24qwwR80HCncTLpLR1K/lEH3cciZpkMtjqmNUOb91aifl9yc1mdJQEPFtAqrlwVC5HIlrFX15PWxuwZIk/rja5HIl5Pa2twS2OjT76ZnR2Ul8eGQmmDeVglytaxdLpFjMf6aYm7xMpi50w8347wQWjeIHElmurPmi1oKqFxXs6Tc97OTsjfol5tmDbzQ1mVlm7tNJWPv2RCI3FTuMKC/kjjigJeUB914VjTNxeo7CK5Xm5d3PnVqZPs2XeLFi7UvVIPCJiPkgiEfvtOiv27qXvLl9OoqOhgTKXVIuVqRKwtces6BBb4fYVMT8yQplZ2Me4vb16LXUjIyRa7YStFfvvT5NmOduvLKyNi4kgJ7Z0mn7fzne0pYUm/mr0m+eFs52Y9/NZ07SJx1LNxW4Gtz+ZrJ4xkwtGsdWyocF+t9XOlaK9vbrFfC5Hhigvlnl+Jv1MN5xMmo+PVikmnY5v5xfuZFjJ5UjIH3nkeCEPlPqHimWen0M3hCFONU09LaWe6dMrY7AsFKi9Zi6gNZbyWsR80LgV85kMsHs3pbKbP7/0eldX9UxMTD5PbQ2DdLpUMtuMGvNvK4tcbnzOdjdlve0IwuVjZISEvBcf2K4uYOHC8tJUjo7SM2hcTHiZcFSxW3gykQj5zZdjmecgW78XcrlcyT3BSCRiLY7KwThxlpOeksX8jBnV45qYzZZcT4CSu4wXMa+aCaeStLZ6M2TZxWt4xcqlzi6fvZ2Qy+etxXxLi72RoKeH6kwcf/zE50u1wq/XAOGgxTy7rHg5zpQp9NfbSxooLPeWQsH6XnPV3GrOHKVDxHzQNDSoiyT2kz/wQNqC09PZWX3+tdu20cMXxlZ2KkUC1iqIcl8R8zyw6MUpW/vKGQALBeDFF/3xUdczOkqTl1eWLqUJwqvFZnSUJl5jUFaQE1sqRdZTJ8sZxxF4nSxGR8my77d1306sAMEEDxsn1GRSzUppRjZL3+/srB6f12x2/DPrVDiKz8EsxZ9fi/cgYHei5mZvY7LX4E47mprM28FZYazEvFWaSbOdJP2x+DNm3xsYoOB+q++ruEx6yRgDlNJ0BqUjyrl3dXWUmjMWA3bsAF5/nfLuv/Ya/f+2bcE8y4WCdXuDcCkMEBOvf8FX3Fgntm8nwXrccROFAFv5ikV/immUSzpNnZxdPIK0dAI0SXR2Wr9vF7A0mWAXDr0w0Oea97o1ODhYfjpAMzTN/r45MXMm7VBt3EhpHt0yMkL+mEafSP3E5rW4jRWpVKmYlx2cWpQXHG5Jp4MJastm7XcV/Awe5gnaOKHW1VG/cVNEh+FKqy0tpcB4swC3MDHL8tHaSlmPzDDL8MNUc+Eo/a6UlYi2w2twpx1WLnXcL6x85jnezWy+tRPzHAth/Ex/P4l1/Y67keZmZ9Fq1zfs0AcD+z3mAaVYG69a4IgjKD1nKlX6S6fpur34Ymnu85NCwfo3gwj2D5AqUIWTnIYGNctbNkud97jjzMUPb1tWS0DXtm3kAuHVr9UtnCfXiiDKzFcjIyM0kOuFgR+55gcGaCHp571kK53b4Fc9dXXkO+91QM3lzIV1kBURNU0tRqCtja6NV8t6Ok2iye/JplCwf9aSSf+2nu1cHTo7vfXpTIaua0tL9YyZ+oJRTFubffpDqwVVY2P1Zu9Kpeg8k0lvlnmvwZ12WC0MjMXKjN+xC+C1al8ySWOLWb/t6aEsXXZjg4pY9ZIxBqB2BZmu1S7WRoW6ulJV83nzyEPhsMOAt72NzjeIdk8iy7yI+aCpr1fLr53J0CDIJeeN8MRUDX7zw8M0KBx+OA0QYRSiiMXsrYU1FqziGXY30lsa/RDz2az/6Ro5+LUcMQ/QwiUadd82zsdvdnwW834vRPmYdn2VqasDZs+m58kLqRQdx+/nz86NAPD3WbMT862t3hbomkbPBMfYVMOYCZjnjLc6P7tc65z1pFriAfTo3SG9VAtmy7zb4E47rPqynWWei14Zd3vZUu9WzKdSdJxFi+zbmkyqucJ4EcyJRLBpTe1ibcohyCJ/mmY9ntVYMUoR80Gj2rF5VWu1RVVfT1t01TAxbdtGq+bZs4NN8cek03RdnCzz1cTGjWSJ8ZtUauKCLxolUedVzKfTpRzYfgb7jIyQdbVcF6zWVm+ZSTgfv5mYD2pi461g1cIpXV00oXgVrfF4MJON3T3z02pqJ+ZZzHrpkw0N9FxMmVL5MZMzKhmtqU7PhdV1rmYxn82Wait4GZO9+oPbwYGMRoGcz5feM2KV7tjOmg/Qb7W3T9wN2r2b5kuudmqFqmHGyzPIOx5Bifl8Xs2I4RZ23Qmqv1u54NXVBbcjEAAi5oNGdUBjv3M78V8NGW327qUH9tBDSxbIoDs7izK7CH4OWKoWV5t0mlxX/ITPzWybtr3d+2DHvpxuqrSqkEo5T14qNDXRBO82CHZ4uOQ7bYSzLvjdd9lnWFWQ8GLH7XPNfcHvgDZO12cnFvg9P541O3HEGW3c9GtuPwvnadMqn8aRrc1GMc/uMlb3z+oeOKW1rCR6d0gvYt4qh3s5sGXXTJhb+Z5bVRVXCfLs7Bwv5gsF+vfSpc7xbk5inheGXo1XQWSiYnh3NwiC1Bl28TRBVwr3ERHzQcNuNk7WJZUyyO3tlRWrxSKwcydVpeXUiM3NwQeeptM0QNoNhPF49VTULBTovvud0iqTMU+zCJSXa35oiIKy/M6SoWm0SCiXSIT6m1vBOzpK6Qmt+k0Qu0qpFPVV1YDLjg5qh1tXGw6w8/uesaXcyc3Gr+1nFvNmRgwW827uO7vksXB2ShUYBla7rlauXizYrO5BJBLOjqhbjO6QXgwsXtMu2sGBjMbx0U7MW9WIURHzRvewPXto/Jo3T62tVj733OZyYgqCFMVOsTblEGS77QyoXoK4K4SI+aDRR8Xbkcs5i/mWFhpkKiVYe3oond6yZaXXgs5iA9DAps+rbkY1VYHlydtvRkasxbxXUVcs0sQzY0bJNcGPa5hO04RTrr88M3Wqe/GSz9v3G79jBAA6b6e+qicWo9SdboNgUym6X+VkCjLDqvKoHj99WHM56tNmO0K8WHFjWedFDre/0mOmvk1mlnkzC7vKgqoaC0cZ6ytYWbft8BrcaYdVIGM+b38ss0KEdm5hTDI5Xsz39ZFbqup52e2y2lVnViGI7FeM14JRKjQ1uXuGh4aAzZvVPutkma8GA6ECIuaDpr5eTSCprGpbWipX1bBQIHeMww8fv+hoaAje8qVi4fUycQQFT95+u0CMjpI/qtlE4jXX/NAQ9atp0/zN8DIyQgOhl8qvZrAoUz0/DlSzO34Qu0qa5n4BM326+3ak09bxAOXAGYic3Gz8etacrKNTp7ob77j9est8pTPaGAtGMVaWeRXrb0tL9YkMFvN8P50ywljhdw0Iq50kJ/Fplo0nl6PX7dwROT1lLkcpf5ub3aXVtVuolZuHP+j5Oqj6HW4XCf395OZqtzvOO2B2Yt4qpqIKqY1W1jI8oKkMvE4dtpIZbXbsIOvtgQeOf50n9qAmFlULb7WJeU7R5af1LJWie2BGMuktKG5ggMRka6u/QaEjI7RA8GuHgtunen6jo85i1++JhxcQboPApkyhCdpNX0mn6Xt+LxpVxIKfKduc3Co6O931aRbOvHXe3Fz5LGBWu67cV7yI+WrMNZ9O0+KLxY/XRZ/fu5p1dda+4nbHMnOzUcnxzlmUMhnazd5vP3e7dXa55svNwx+U2FaJtSkHt7+bzTr7u3PFWjs3Gx7ragAR80HDbjYqA5qTmI9G3Vuq/IBz4B9xhHlGhiBS/DGqFl5OJVYNYj6TKQWpuRFoW7c6B3laiVOv6SlTqVIREz/dJ9Jp64WHF7jOgmoQ7MiIdfAr4/fEY3QzUKWzk87PjasNZw3xOxcyWx7trFF+Bg8XCvbiqKnJXVC2MfYoFjPPLhImmYz1+GXm+64q5qsp4B+Y6A7p1sDiFCtQDlY57+1EsZkVWyXbDo/FQ0P0/f33d99WK1SeTzuCEtvlFoxyoqHBXUwcjyt2uoQLBjpZ5itdcE4REfNBo+Jm4+ZBmDYt/Ilpxw4SfGY5chsags1dq2rh5dy/1SDms1ladLkpR5/N0n3dssX8HNh9wCqugv1v3Yj5TIauKxdV4sBBvxZmfgZnNjTQuasuZEdGnLPzNDSoBaer4jaTDROP08LHrd98c7P/O1J2xYr0eCkIZIXds93c7G4Sz2YnCudKZwEzKxjFtLZau3LYCTZ226m2TBv6vsNWT9V+ohIr4BWr+Bgnq6wRu/z/TCxG93X7dkojPHu2u7Zyrnmz6+a1+ivDO3l+z5Pluv84YZWRyA6nnWreSbXrA0HkzQ8IEfNBE40654LO5exzzOtRzV/tJ5kMCXmzTh20Zd7OtcSInwKjHPJ5uk/GFGV2cDXPuXPNA3d4h8LKMu8l1/zgIP3e1Kml1/wMCvV7YO/qUrfMOwW/Av5XgU2lyFrupVT6jBnqzxBPQnox76dlXmUx4mc/cRLzDQ3qz1GxaF5ptdIWbKux3axwlEp6Rqvg2UqRz1O/1/edSMTdmFyuC4kdxkBGtsraHcvqPZVxjXfNDjrIvRi0u7fl5uEPqvK1SuB8OXjRGU7GLXazsbO8i5uNMI6GBnvLEvtYq/hBeq2G6RXe+rTaJo5GaaAMYlLhSU41yC/IHLpuaWykoF3V9nB2kne8gwbrnTvHvz86StfBbrDs6HB3H/r7KV2afrDyQ6TxxO73wN7ZqWZF5x0Hp0wvfheOSqdLuxxumTJFXZTri6j5XaWwWFSz/PmZFcNOUDU1uQ9gNY6jzc3+7sC4wapgFGP2uopg48JR1ZLRxsrFzI2YLzftoh3G31TJSmMl4lQWG62ttDPILoxusHOZVNkZsCOoYnlskAyqeKMbDwD2dHB6PsTNRnBNMqkm5lUGsbCDYLmipd3We1DprniCUM2I0thYHRkeOL1aU5O6RTCTIfE5cyZw3HFkide7XXDOdDva2tz5pxaLE4s6+ZHhJSgrTWurmijjYlFcidKKIMqEe9056+ykNqvkm+dnsqkpmCqFKvfNj6wYKj7S7FqmIua5Pcb2t7S4s+77idOz0Ng40Y1IRbBxxp5qscxzdiXjIsRN0R29CPMbMzGvYpnXB5e7CfKcMQM46ihv44FTrvlyFjteYrlUKNeX3wle5Kn0d15YtLTYz4cqbjZimRfG4TTZZrOl1HtOcDXMsMT86KhzefqgCpg4uZYYaWysjPVNj77aI1s4VURPJlNydznwQEoBum1bqd+opOd040vJgtfoiuKHAOfB1G8Lm2qawcFB8lV1EgVsSfJDCLM48FrOvLGRrPoqfvOpFC3ceJLx271M5b75IbhUrKMALcpUhLhVpdVKZrRx2nVli6Nx/FS5B21t1SPmuViaUcw5GbL0cM0BL25qThgLWNkVK9N/R+9f7sanv7ubiit6xS7XfDnPXjRK84jfC9ty3X9UUDUa6ndm7ebeQqFUbNIKpz5SRYiYDwMnkakadAZQxwszo83oKB3PbqspmQxGRI+MUNpE1W2uoLb43KCfvJNJdcuvppX6QF0dcMwxwOLFwMaN9P1o1HmHgjNcqNyLwUES8sbf9EOAB2WZV92VyuWoEJMTXHreD0GksoPlxOzZapMsp6Vk/BLzbKlS6QOJRPmWeRZUTs9te7uaILSqtBqPUz+vpJi3ehas3AdqTcxbFUtzMyYHKQiNaTJV3Wz03wly58BIR0cwlnlAfXHsBpUK9uVilsbVDDYmORkBWczbEYn4X5E4IETMh0F9vf3ExwGTqkybFp6vpIofcFBBL9ksWThUKXcFvXdv+S4m+mqPquki2d1AP5E1NADLl9PA+/rrauk5Ode8yuJhdJT8OY27QYlE+f7FnOvbbwtbfT1ZW+yCYHnh4+Riw/gVyJlKmbsZuGHKFLVqpcXi+L7gV/ErNz7LfuS3V7XMc95tp8UDT+JmVvBKZAED6FngRb0ZRt93N+kZ3bjxhYHZQtaN8FUJ/PWK0aUuny8Fj1thjEcJ0qffiFmued79K/f4ra3+95sgKvcaUbXM88LCLisQQGOXSpuD3nHwCRHzYeA0oLktg6zqkuMXTiIyCDHPYtJNBdFyLCbDw+TWsnu3998ASjnm43F1Mc+FsYwT2dSpwPHHl9IyOrnRqB6PBa/ZIs2PVKNBWticRBm7DzkFvzJOfpWqWLkZuEHFb54nYb1wisf9mZw5/anK8+wUeLtrl/OzpJq9pLXV3oeY0T97RtrbK+OC57TrWlc33q+cFzgq96BaCkfZFUurJjFvtMw7XWNj2teg0y/qsQqM9uP4XLvBb0Ef9HVR1Rks5p0yPuXzam12qvhbJYiYDwMVi7FbMR9kOkiGtxWddg0aGvyvvsqWTjfl6tn/zYu1cNcuYOFC97m+jXCe60ik5BrjZBHMZKzzky9aRC43c+c6Dyiqueb7++m6mol5P4JC3biNuaW93X4SGhoi1yxVoeNXeXNjwRwvNDeTdd6uD7Lbhl70+LXt70Ys2PUTLmPf3+98PCfrKFBayDqlJbWqtAqUMtqEbcnOZJzHsPb20jPr5h6wW12lg/7tiqW5HZODEoTG4moq+do5baFezKv0Vz8wsyr7lbqzudn/IFi3BkkvqP4+ezo4GbeKRbVrGWRgr49UfwsnA3Zinq0abqws3FGD9gFlQa0i5p0KNLhlZIQGHbeW+VjM/eSWy9GD3dVVftpPY9Gazk7nQTOVKg2wRiIR4OijgWOPdT52XR3dK6fjDQ7S4sBsIPMjD3G56dPs4NSsVgvHdFrNX57xawLSNH98RufMob5vhT4tJeOXAMrl1Iuk2OW337mTFlRO7lqqBXASCWf3KsDeb7elhX4nbFcbTXM+x9bW0nV0EzzOi/dKp+PltLpmxgijRdyJoHYbjFWLVfuePh4lyJ0Ds+Mahahfbj481/j1LHC+9qAt825cQFmT2O3oFYtq/a1GCkeJmA8DO+uEm4JRDKelUy2g45XRUXrwnQa9IApRjIyQv7wbv2tjwJIqvb0k5I84goT4wIC77+sxCtmWFufFhTGg0Ugkor7NZxc4BZC4yOcnpqRk2PJT7sIsKCuNXRBsPk/Pmaq/PFCagMqx2LIvqx9inv3mrSYsXmDrn0nO1FGuG0kuV9qCd8LKzSafpzbOn+8sGNxUs5w+3dl4kc9bu3epZkIKAifBoH/fjfWV/e0rHQSbTtNiy2ysVq1QzDm//awabUTvc60q5PQ1YsLI2MKYuYiwVihXWDY00HPu17MQlvuRqs5g/32uj2P1fGia2i5LWLsxZSJiPgzq662Dxdz4qTKRiNrkVi6joyULmx28cvVzUsnl3Bfg8VLaXtNIvC9dSmJs/nxn9wA7jAViVCw5+bxz2klVWlvtFw+c7tPq2nIgbrkLs6AGdl5cmi1kVfPL6+EJohwXMTs3A7dMmULnaGWd53oE+mfSr8JRbrNqmRVp27mTFoqHHuq8e+hGzDu5VwH2xZkSCTq3MDPacF5yJ9GoH/vd5OtubKTvViJLjx6rTDaAet/kdIJBxgHoxzVNU1swGeMZwrLMcxIFvWGGF9vlEom4y4g3PAw8/7z1/M7uuEG72ai4gBpjTpwyPqmIdLHMC2NwrlKzAc2LZR6gST+IQk168nk1YWQM4iqXQoEGHDf+8oC30vYDAySAFyygf8+eTcf3YuXkyVsvUDh4xsk675fFx2ky7O2lBZrd4qGlxfu9ZLexoAb2ujpaiJhNREND1F/dTHh+xAiwtdyPiba1le6Nld98JjPxmfTS782ws2ybYUyJmc/TIuuQQ+h3OjrsBYOqdRSgSdnOBc6qYJQeq34TFKqGGn3hKDfW37o6cpcrN86nXDTN2h1S1cDipgq6V4z9VdVfWl80KmjBqkcfSwH4uzPQ2ak+XnAa4z17zN93U/SyHFSSMxhTwTY328/lblwKqxwR82HAlnmzAY1Tl7ntLGxBCyqgi39X1XXAz8JRLI7c+MsDdA3r6935zPf0UJApi9vubjru4KC7YwPmkzf7PtpF1Eej/g3SvHgwG8ByOfpbtsx+t6Wcir5hpG+zSs2aSpHPuRv8cBFLpcjS5UeQVCRC52CX0cZoPecFSbmLe7dixbiDs3s3LRQXLqR/q4hn1WC+1lZaLFn9Hvc7OzGomq/eL1QNNewuw8+nm7Fg1izvxgc/YMOLVZs5laLT88WZiIIUy8Zgd5W+Z/xMGJlsGGPhKDc7WU64MTyMjtK8aDUnuom1KQdjELNVW/SLQqfFoYruam+nir5hLuQ8IGI+DOwCM71m/uAS5UHlm+egJlUxX4411wi7S7j1QY5EqM2qoiaTIQG2eHHptZYWenC9uNqYWZecIuq52JCfYt5q8bBrF03+8+fb/0Zjo/dFohe3MbeYpWZlUcFVdFXxw0VMpRaDG/gcjPfASjh5cS+zws19a2oqjWmFAk32hx46fovbqR+pinmufG3lfqTS74I2gBhRdR3RJxAoFt0Jtq4uGicrZZ3nTFx2c5hKUTN9FrCg0MfHRCJq4tP4mTDFvDHXvJ+53Jub1bMMFYtk7GpsNH/+wnI/ikScC0cZdwmcCimqZho89thgKhP7iIj5MDCmuNKTybi3QAPq1TC9oprJhkkm/ZskR0ZIUHuxdLqphrl7N4lbY/aTBQu8LZL0BaOYhgZqk1WwUSplnmPeK1aLh3yeruuyZc4DWDkTVhjBUGapWTkWQDW/PGPl++0GnmT8YsoU87gAqxSmqtZPO7zsEOmFeE8PWeUXLSq91trq7GKmKuYjERoTrIL+zZ49I5zFI6yA0VyO2uP0vBkLR7l5dlpb6bqXE7RfDhwvYtdvVFwwjVnAgoCrFqsWKwNKn2H3wTCrjJvNqX6Nq83NNDc5BcHyee+3H82Tvb0TPxNG9VfGKZ4rmy0tVIDxu156OOC6BtxnVBExHwZcIt1MZKqkLjOjoYEERFAZbVIpWo2rbp35aYktFLzn7Fb13S8W6dotXTpxxT19Ot0TuxSBZmQydHz9AOEUUZ/J0HX2a9Xf0GAuWHbvpq3S/fZT+w3A2+Ism7Uu3OMXZnnHh4ZKRZfcUs6uEgd/+Snm29upzxitrXYpAN0sYs0YHaWJz82kzMKiUKCdrEMPHS+mW1qsg2B5MnUjTjo7rRcGLObt+h3vZlplQtq4EejrU2+PE6oixxhz5FawzZ9fuSDYVIr6q908odI38/ngalMwvIOVybgX82FWf2UaGycaAf06flOTWnan0dFSvZf996fPG63chUJ4WX6civwZF4VcFd1o3OJFioh5wTX6FFdm73khyIw2qRT9virlCEA97Erg1UqTTKr5j/b1kTiYN2/ie52dtJjYu9fdsa2sS3bpIlMpd9lXnDDLNV8skgvEsmVqfa0cH+wwtlx5W18v5kdGyNfcyza9Ps+3W/zMZMPU1VEgtlHMp9PUVjPhVG4AOtc6cBs8DJBVvqtrvFUecE4j6rYADrthWMWD8E6AFWxBNrZneBh4/XV65nt7/RtTVQpGMVxcLhJxL9i6uswFSxikUs4uZiqF2YyJA4KAx7VUihaSKn2P0x2nUuHkUtej32UtFuka+WUkqa+n58VJzHO9l+ZmGl/b2yfuAoUZGOzUl7hglP7zZulb2ZhQA1lqVBExHxaNjRPFkUoGBjs6OoILfNI0d9lk/ArCY3cJt5lsmPp6tQXFnj3AAQeYWxR4W9GtZT6XMxfzLS3WbbLLBOEV4+Kht5f8sI1iy4pyMryEseVqTM3Kz4DX3ZzGRu/P0ego9Ve/hcj06RP7TDptHRPQ1FS+ZX7aNHeubVwQqK8POPjgiQuBaNQ6BR7vaLgRJ1yi3ez3Mhm1fjdt2vjv79xJf0cdBZxxBp3H5s3+jKtudl1bW+keeLH+Tp1Kz3w5KXW9olIszekes1ANMpMNUOqv6XQpw5wTbM3n74TtZsNiPoidgSlT1Czz06fTuNDSQi6oZlltwlrkOGklY1wBuw6aiXl2f54kiJgPC32KK4YfUK9ini1Rfgt6L0VwOCtIuf6oIyN0XK+WTpXBdmSEHnjOumHGjBnurV1Wk7fVhM5ize8tytbWkrDTNBp8ly1Tt7qWcy/D2nLt6Cg9Tyyove5wlDMRpVLuRbAKnZ0TXUIKBetFror1045s1n3wMGeXmDaNtuDNsMo85FXMW9UYKBTUxozOTno28nmyxgPASScBK1bQ99/+dnr233xTvV12qApUdkXxItjq62mH0UsGrnLgXVSn6+50j1XiHfxAb5l342bDlvmwxTwHT2ezpefFT9Gskt0pnx9vJOEUzvp8/V52k7yi4gFg1FNmO+PiMy94xszNptxCGW1t1pNbOXjxn7XaznLLyAgVnfGa1UBlsN29m/Iz27kRTZtGE79bVxuzhRmnHjVaunkS89sthSP4gZI7kT5jjxPlWOY1LZyBnfsmuxC1tXnfEShni9iLCFaho8M8S4lVXylHZLhNQ8tw3z34YGtBZ5XRxk0QIhON0nNpNd6p3EfeJXv9dXIbOPNM4KCDSoux1lbguOPoM+VYulnkqPYtHj+9Wl9nzqRjhpmikl0wnAreqYj5eDx4Nxu2xrNrnMoco3ez4XoAYcJCNIjEAk5GF94x0e8cz55N4x1b58MqGMXYeQCwH7xRT7W1WQfAipuN/1x//fWIRCL47Gc/W+mmBINZp/FaMIppbaU/u5zURnp6gFdesV/Zjo5685+Nx8t3sykWyxNHPHFYnV8+T9f9gAPsB/P6erJCqKZ844HEyjJvlmHGLqCxHPSFqnp6gCVL3LnylJvhJYyBvbW1lI1hZIQWZ14n2kTCukKzE35nsmFiMcoewf2PUy9a9ZVyxDwvKt2K+cZGEsJLl1p/pqXFfCGbz9P9c3vPpk83dw1Q9dttaaHx5aijgNNOo6BwI/vtBxx5JLnflBMY7ZT3Xg9n3fBq/e3qonMLM0Xl0BCJTRXLvFWdFSCc6q8APatNTaUgfRX0lvmwqr/q6egoWeb93hloarLfgeW0yfpxIR6nXTjeBQoje5keu7ogxoJRjFm/Est8MDzzzDP44Q9/iEMOOaTSTVEmn8/juuuuw0knnYTrrrsOeScRaybmufN5fUDr6mjCd+PbvXcvDb52VicOanIz0arkgHWC3Xu8+ssDJUuK1f3o7SXr3ty5zr81c2apXU5YDSSAtZhPp+k9vycxPl5PD92TAw6w/bhpX34rw0u+UMB1v/oVTrrmGlz3q18hbyd43Vojy0GfKUXTysvz7rVwFAvsoLJwdHeX+p5TPYJEgq69F1cbzljhVszX1ZEotluMWvm5ey2Aw4tS/Xm6Ec5dXcApp5Bbjd3xjziCdrM2bfKe1cmNoYYt88mkt0VpJVJUqgadO8VTcbxDGFZvzt2u2vc4E12YGVv0cHpKfl78vEZO6SlHRszHhblz6ZqMjoYv5t/qS/lUauK8ZGUctRLz9fXB1jUImYovS4aHh3H++efjRz/6Eb761a/afjaTySCjE0SDYfsI6li9ejVWrVoFTdPw8MMPAwCuueYa6y+YCfZcjoRlOR2qq0vdoqhp9Dd9OqVhs9oe5Xa5xSzQxA0c/FpOQKi+QJfZAmpgADj+eLVJtru7FL3v5I9t5/fJFlVj2rt0mgZGvwcUFvPbtwPveIfjTodpXz7xRCCbxeo778Sq226j9154gd774AfNfygIv04r4nG6N2+8QdfcbX55PfrCUW4WIlyLISgx39lZitvgXRwrEaIvHOV26ziVKvno+42+2JNeFHgV87wjw88bMLHqox2RiLk13kgiQePEnj1koZ8xw1073Vqb2TJfjmCcPx9Yv977993gJujcqahZGDnmGb6+bvoeu9dUwjLP7czl/HdDYkMSZ8kyMjpKu9NG6/X06fQM7d5dWoSGKebjcaz+9a+x6ne/Gz8vvfvd5s8cp/jkhQdA+iDonaCQqbhl/pOf/CROP/10nHjiiY6fvf7669HW1jb2N8dt6XYfWbt2LbS3LDaapmHt2rX2X+BVoN7K40fmD84FrxKoyYGCixZR5zbzPfXqPws454B1YmSEBvVyBk27iSObpfdmz1b7rcZGsjyp+M46WeLMgnCyWX/TUjKca37KFHKxccC0L79VBXbtunXj31u3zvqHeLAMy3+SLZFtbc5+u3bwhOTWMj86WtohCILOzpLffCZD/7ayzHG/9+IWwhkrgiASmZhBBvCewtQsCJaFs9/9bto0CogdGfGW2Yp3fFTgPliOmJ8+PbwUlbybo7KIZvchq76Zz4cn5vmeuBGfXDskzOBXhuOtOHWsn9TV0f2zssyn0+YL37o62u0dHaU5zO8dAzvecgFd+9prE+elXI7ulbEtvFDWGxoLhcrczwCpqJj/1a9+heeeew7XX3+90uevvPJKDAwMjP1t3bo14BZas3z5ckTesqhGIhEsX77c/gv19RPLJ/tRKIML5aj4zQ8N0aC5ZAlZcXbtmviZTKZUkMotbwlAz5Qb/AqU3GzMJo69e0ngqljmmLlz6Z45BZY5bRV3dJi3KYit20iEjrdokZJIM+3Lb012y5cuHf+enX+0sZR20LS1UV+dPbu8yYR3E7yI+enTg9uqjcfpeWAxb7fDUk5q2GKxvJ0NJ6ZOnbhj5zVQuqGBdmT04pot80H0uwMPBA47DNi61d3Y5tbazNnDylkYhpmicmioVNzMCSfXRyA8KynvnroRcslk+AWjGG4rG+L8ZupU88Uf93Wr+ztnDmmEPXvCdz9qbcXy+fMnzktWz1xj48RCipPQMl8xN5utW7fiM5/5DB588EE0KFpUEokEEpV4oEy46qqrAJBVc/ny5WP/toQHNM5vypTboeJxcrXZuNHZyjs0RCvqWIwE/fr147eeAG+ZbBhVy1ihUHL5KRbH/3+5lmo7y/zAAGWqcOOG0N1Ng9XwsP01cZq8jZM0p3ULauv28MOVMzaY9uUtW+i9c8+l99atw/KlS8f+bUrYVRJbW6m/+GFVbmlxn7moUAhWBAPk3vHSS/T/dgtsr5Z5zlgRZPXNlhbzfujVMtbdTb7sDGcUCmJRVVcHHHIIJQ3g7C0qpNPu+8bs2eXtMMVilKLy2WeD22lhhocp8FllEc0ZRsyeLxaNYYp5rgrq5jv8FzbsMsnt8BuOITDCRj2rOa29nQyC27YFX1fESHMzrlq5EujoGD8vvfGGeVsSCToXvQEgn6/M/QyQion5v/zlL9i9ezeOPPLIsdcKhQL+9Kc/4bvf/S4ymQyifpW4D4BYLGbvI29EH9Gv70R+bA3PmkWTjR16f3mABv3ubgqS5EBPgMR8d7d3qxnnvbca5HfvpkE9FqPPRCKl/7JlqRzq6qgdxniKXI6u/6xZ7n6vrY2ux5tv2g9axspzRjjDDF+bTMY+oLFcXJynaV9+K8NLDDY+8kayWRrkwwoqamsjVwg/XJXcBm+zCA56IuvspH5bLNr3FU6751QExgin3AvyPFpbS+4f+nHFq5jv6PDfXdGOzk4aA7ZvV3tes1m6Z/pxVYW3vc1b+/TMmgU884z9GFwuPJe4iatKJmnsN8LGpKDTUjIs7Nz0PXbhqoT446DooHLcNzebz9kqQfELFwLr1oVv4U4mEaurmzgvGQtG6WlrG7+Y1LRJ52ZTMTH/7ne/Gy+xxektLr74Yhx44IH44he/WNVC3hM82bLFmFMj+SHmOzpKqQitrhsH0LG1KB6n/NAPPkgTFT/IqZR3q05DQ8kqbvWgDAwARx9NmSLq6sYL+ljMHwthQ8PEYFPOt+7GxYZZsEAtsMxuUGNrUC5Hk0JQaSn9Qp/hRfVZzGaDtfAaaW0F3vWu8rIfMU1N7lJTmqVtC4IpU0pl1536SjLpLk0tUNqJC9oyz37uiUT5hWZaW0uGER5vgrwPkQi5rL3+eqntdvT1kWHCbdCsH3R1leIsgvJDN84lKnBRLCNhFYxi+Fhudmc5qLJS4q+jg4xJQVnmOdOa/h6MjlL/tTvm7Nm0YA17kWN3PKt+1NEBvPrq+NcmUY55oIJivqWlBQcffPC415qamjBlypQJr08K6uvH59rltHZ+iPnOThIjxowRethNRD8AL1hAnZx9yQGarLyKI33hKLOBj/3OZ80KdqJraprobjAwABx7rLcBububBgm2VpjhlOdan54ykSBxNnVq9Q4oXjK85PPhL078EPKA++ewHHc0NzQ0kEDbvdv52jY3k/XYDakU7dIFmW+Zr1NfH403XgpG6dEXy+PrH3TQ9cyZpaw8TvdhcJAqLlfi2W5pIWPM1q3BiXmeS9zsoppVQAdK42FYYp6t7G76Hqc9rZRbRnt7cDEhTU2ljDb6e6Bi1GtooADxcnfT3WL2rPNOqdU40NQ00Z1oEuWYB6ogm80+QyxW8pkHyi8YpYer8NlZ5YaGaCWtt7K2tlKAV28v/ZsLH5VTSdMuK8jwMD1UXtJeusFoBWLrstfsR1On0iLIKrBMZau4sZGuDwcbpdPBX4dy8JLhxW6bs9pxO1GOjlK/CGNCmD27lKbSDi+FvtLp8nL0q9LVVcpoU66Yb2oi0arPaBN0v+NdPeOOn5FMxl3GrCCYP39i9iA/GRoig4ybvs87MkYymVLxojDgOc+NAG1oqKyYb2oa7zvvJw0N9PvG/qJpatdo7txwd2OBUpE/4xxvp6fMxgcR88GxZs0a3HjjjZVuRjDwqjEIy3wkQpOHXfq0fN58pb1oEXX04eFS3myvYp6DH618jwcHSQAF/fA3NIyfOPbupYHJi4sNQAucRYusqyuqFIipqyNLGfs0FwrhpWPzgtcML2GlpfQbfbyHCmGJYIBc0o491vlzjY3q7dcTRgBbR0fJkFGumI9EaCwbHS0Vmgu637GrjVk6Xz3sYuN1rPGDrq7S7l8QFAruXTGt7nWYOeYBGoeXLnUn5Lq7qchYpcQfx1YF5eYzZcr4jDZcL6Ra5ye9BwDjVNeBk0Hw+BiJVO+uuEeqSsxPevQW42yWVsR+xQZMnVoKTDLCW5lmgYLTp5O7za5dJTcSr64SkQh910oAjozQln7QAZLGh3RggIJ1yhkMu7uts4Wo+n12dpYGTU2rXn95xu5eWlGrGQLYrcjN+YY12TU1qYlDt/2bJ+0wxHxra2ky5eOW8zxOmUJjaZg+1zNmlDJbWTE0ROXuK2n1CzJFZSZDz4nboPNqEfNeYENMpWhrK1VrDYLOzvHCmNNghp2lRhWzsVrFMs+GRtZIYpkXPNPQULJO+T2IdXRYl2YeHCRruFnAUiRC246aRqK3q6u8LAitreaWeXbhCcO1RD9x5HJ0juUWGJs+3XqC5DReTkK2paUkZsotEBMGVvfSDBZotWyZV3Ur4l21ahMhbhdSYWSyYVpaSuMTpzAtxzLW1kbPNYvLMPod16iwcrVJp6ktbjNm+U0sRq42AwP+//bQ0MTYKxXiceudr0pUVq0lpk4FTjklOPHJGW0Yjr0LK8OQW/TJGRh217K6RvrCUaxFxDIveKaxsWSZz+X8dTfp6LAuHjU8TBOMVeedO5feHxwsX2xbVYEdHKQBwq7wjV/oxXx/v/csNsbftJogVRdmPDimUiS8qn0Sc5PhheMG9gXLfLnuaEHBgkmV0VGayMPoh62tNP6lUjQ+KNZAcPy9gYHwcoBHIrTDZ+Vq09dH42fQOd5V2H9/CpzcudPf3x0aoh0Kt7sqXAfBbDyp1TibMAnSisweAjxvc3rqsFIMuyUapfFXb2hy0lMs5jOZUq0fscwLntH7cmuavyvfWIwGWTMxn8vZZ4+JxYCDDiKhXa5AsbKQDQ3RJBeGcIjHS9V29+4lNyI/JvvZs+m+GSckN2I+GiXLRzJZ/WLejbXTz4DuShCPT/TDtGJkhCaOahMh3O9Vq8CmUrQTF8akXV9PBgcW8+WOfSzm+/vpXoRVTp6z2piNs+xiUw1plbu6qEDeyIj7dKV2ZLPeMpGZFTXjeIdqe472NdiFh3f1g64I7QfNzePHOadaE3V1pVoinMJbxLzgGaNl3G/h0909UYxks9RpnR7O+fPJn73ch9hKNKdStAMQBlxtN5MhoeLXcadPpwHDWJCqUFBzmeGMBAMDJGzCEiBecbMAYjebWrXMRyLWi2EjqVR1Wq7i8fG1LJzI5cLZKWM4o00uV/5CNhYjK3jYPtdWrjajozSeV9rFRs+BB1Il6DffVO8TdvAz7qVIG+986dvBsVzV6s6xr9DUVBLz7IJSbS6ERowuoJrmPKa0tYmbjeAT3HnYb9BvMd/RMdH6MTREK1KnAbipCTjttPLFvFlWEJ4EwhIObAXq6fHHxYZpbqbJ2ug3H4moWZdYzA8P+1O1NGgSCfUML34HdFeCWbNIbJgFkespFMLPraxCIlEqouQEn2OYrkLt7XTcYtEfATd9un+F5lSxcrXp66PFSlgZjlSoq6MCffvtB2zc6NyvnRgeto69coLHZKM1Ncwc84I5sRg9m+l0KQlGtYv5ZHLivOSkp9raSItwNi2xzAueYTHP/sV+D2KdnRO3gIeGSMyqWEz9EGJmgYSDg/QghS3m+/rIxcbPRdO8eeMj4nlAUbmXbIWqr68+f2szzAKNrMjnq99tyInp00uFgazg4iTVONmxZV7lfnHQdphCuKWFrp1dhWg3tLXRX9hi0MzVZniYXGyqbbetsRFYvpzGm3L954eGaLHi5XrHYuaWeZXEAULwTJ1Ku2YcR1PtyRn0czqPyU79kg0IxaK42QhlwgFqbJHw2zKfTJLFVy9Gstlwt35ZAOq3wAYHqQ1hDdrsZtPc7L9rT3d3qdouUPIVV53gOjvps7UgfN2IeSefxVqgvZ0mNbuUflwpsRrP1cz6aUVYFWz1cIaMfN6fsaC1le5Z2HEaU6bQwo9dbdiaOXNmuO1QZfp04PjjqZ1mtTLyeRL6r74KbNpkbcFPp73PJZHIxKJmtZCWcl+hrY3u++go9ZdqW5Qa0Y8fbBx1Ggd4jhbLvFA2LDJTqeDSqc2aVRKaHGAUpkuHWUGHsBcUnPauo8NbsJYdHR1knWLBxwWjVMV8e3upCEi1k0iop2v0y3WikkQi5JJgVxhoZITuX9hVD1Vg65TK/RodpQk8TKtoc3NpZ8pPy3zY/c5YQGrPHhJAYcYfuOWAA0r+89w/hoeBN94gFxy24Dc3mwv6QoHOu5y5xFiZO5OpTne1fZGmJrrn2Wx1VyZnGhpI2xQK6skXGhtp7OFYjUnG5FqaVDv19dQBR0dpUAyiotuUKSU/56EhGpzDjEzn9IS8oEin6d9hT3RNTXTefi+YWPBt3Ej/drvL0tRUKgJS7bDbhmqu+ckwQE6fTs8oL9KMpFIULF6tVp1kEti92/lz6XT4KRTZsLBnjz9jX0MDsHJlZay7M2fSszw8TGPd4sXVbc2sqwOOOYau/euv07+TSVqUHHAA1eFIJMjo8tBDwObN1M+ZcvzlGaOYVwlaFMKhuZnufyZTnbuORvSphJ2qvzKcnnJoKLhquhWkSmekSQpb5gcGgrPsdXTQoJlKUaedMyd8y1Vra8lyPThI1uiwAz6XLAnO6tPdXcpZm8nQBKcq7jh2oBZSOEYi1E937FD7fC2ckxPTplF/HRgwt1Cl09UV5GhEtWpvsVgZq2hXF1l+/ZpM29v9+R23cFabDRtKgfH/v717D4rqPP8A/l0uuyxXuQgrF0FUQohiFHNRTLAxaNXUZjrJpIrFTDq2aTVCYmLS2jYZM0iig20SjFaboZ3GhjRT6SSZNIUYxRiLMQiNiUQ0XkCF8FNRiFKB3ef3x5mzsFx0EZbdc/h+ZvhjzznuvvIezj7nPc/7vJ7Oz08Zfbdale+FxETlHO9elSkuDrj/fqC0FKir60pTVPPlB/O95e/fu6wvJ796BrU8pY+PNlKfuqfzdnQo7b9RdRo1mFcXy9MZDx5K0CE1p/XqVdfd/Y4apbx3a6sSeMTGuuZzrket5wp03VAM90hmcrLrRh5Hj1YC+Obmged9xsYCmZmuaZcrOBMcqqW+9BDMX29xMJUnf9n1FTD1pKZMuCNVKDhY+Vytj4ypqTbXrilBvRaqUwFKQP7QQ8Ddd/e/xsDYsUpAbzQC9fXKtitXBr+Kdvc+V68ZWk/N0wuzWekLT50P1FP3FFBn52upo/cdHfp4itwDg/nhpKbZiLguzcLLq2s118HmON6swEDlYq0usDRUpSE9hY+PUp6upUW5MAw0uPPkx/E99Vycoy9qzqJeLpAxMcp527P0WXu751ciciZIducKtmowr4dzZcwYJd1mwgTPW3Pgepxpa0ICMGeO8n115oxyzRpsqmT3c3Ogc43ItdRYYfRoz00h7E5N51WDeWe/g9Xj9HD96UFDUYUOeHt35SG78iIWGamMyjtTX94V1BFa9XGWFibUDNSYMcoFsKND36NLZvON61Or6wjoYWQe6Eon6LmAlFq1xJODeWe+pNS/S3eMzFssSqqHHoK4iAggLU0pf6tHiYlKQK9Wohns3KuewTxrzHuWmBjHeRKeTs0AsNmcn3sxalRXHKYzGrgF0xm1rq4rA5/Q0K7JSu6YaKn+39SVTvVYscBiUS4M//d/+v5CciY4VEfZ9DLaERysBPTnzjkG7levdlUj8lTOjswnJLhngS+DQT839wYDMGWKu1vhWhMmKDfzdXWDv4k1mZQRfqu1q6KIXgYA9GDyZHe3YGCCgrpSQJ29JgcEdC2upzMcmR9uankkVwfzISFDX2PdWWrZqMuXlTZoKa3EWX5+ygJSeh9dUlf0vd7ovJqDqJflsQ0GZbS1rc1xe1ubchPnySkVRmNXwNQfT5/ES55l4kRlhH6w1/Hu6yCoec56/G6g4REQ0JUC6mw85e/fVR5XZ/iXNNz8/Z2riToYfn7KBFB3VVhQZ5oDw1/+bjjFxXUtAqVXJpNyY3a9vPmODs+suz4YUVFdFYtUVuvwlnm9Geqo043mOXjyJF7Sp+7B/LVr7qtERPrg59e1YJSz38HqRF+OzNOgqYsqufrx4l13uW9FQjWYDw7WzyP1vsTEKE8e9BbIdqeer9eraNPerr/fQUSE8oRLLbGqLhnuyfnyQNecnP6CeS1M4iV96n5uWq36u2bQ8FLTtgYST5nNyg+DeRo0dQa/nnMF1bJRYWH6DhoCAoDZs3X5yM6u++Ic/bFatbEI1kD4+ippVC0tymt10qinn8/q6Gd//XXlijIyxUCKhlv3kXlA34UDyPXUQcOBVEVSg3kdfmczmB9uRqPyiFvPuYI+PkqwkJDg2fnFdGPqQiI3qjWvl8mv3cXEKHMFbDZl8qu7KsAMRM+AqafmZiU9jCtv0nDz9lauE+3tyveCntMTyfW6Zzk4W53GbFYmdXt6uuRN0N+zBk8XFzcy8lUnT9bOQirUPy8vJfC7ePH6x+nxSVNkZNcCbGoFGE9/PKsGTD3LagJd6Q3jxw9/u4gAZTT+22+V4Isj8zQY6lPjgQyw6LgClY6Hhz1UcLB7VmUdbklJDOb1onvVgJ7UXHI9jswHBSnVay5d0lYFmP4W+mpuVv4mR8L1hzxTQICS6sUFo2iwus/NIwbzRHQDwcHKo/G+qNUE9DgyDyh582pFG608UfP37zstqrlZucnWa1+R5/P3V26MGczTYKlVbDw99XGYePgzYyJyO3///uuWq8G8HkfmAaVEpcmkPIHQyghQX09S2tq6JvUSuYu6BklgoHsWLSP9MBiUqmNM1wLAYJ6IbiQyUhkBuXSpd23ojo7hKbXqLmqJyrY27QTzJlPvRb7OnwfGjFHShojcRZ2grcdVwWn4pac7P/lV55hmQ0TXFxsL3H470NDQe8RXHZnX6wXV21tZDTYkRDsjQD2fkogoecrJyfquokWez2jsquhGNFg6XQDqZvDKTkQ3Nm2aUs3lzBnH7eqCUXouQXrLLUBamrtb4byeN1aXLytPFeLi3NMeIpXJpKSBMV+eaEgxmCeiGzOblVWFDQYlOFR1dOhvwaiewsOBxER3t8J5RqPSTzab8vrCBeXpQs8UKaLhppak1MpTLiKNYDBPRM6Jj+9Kt1EnxHZ26j+Y1xqTSXn0bLUq/WOzsbY8eQajkSPzRC7AYJ6InDdtmpKuUVenvBbhF7OnMRqVeQwdHcqofEQEa8uTZwgIUCa/MmeeaEgxmCci5/n7A3ffraRxtLQo2/RallKr1IohnZ1KBaKkJPYReQY/PyAzkwMAREOMwTwRDUx8vLIk9rlzymu9lqXUKjWYb2lR+oa15YmIdI3BPBENjMGgVHeJjdX36q9apS7i1dQEREcrC18REZFuMZgnooELCFDSbSwWBvOeyN9fGaFPSmJteSIinWO1fSK6OQkJykQ2ljz0PP7+ysRX1pYnItI9DtkQ0c0xGICwMHe3gvoSGNh1s0VERLrGkXkiIr1JTXV3C4iIaJgwmCci0hsu5EVENGIwzYaIiIiISKMYzBMRERERaRSDeSIiIiIijWIwT0RERESkUQzmiYiIiIg0isE8EREREZFGMZgnIiIiItIoBvNERERERBrFYJ6IiIiISKMYzBMRERERaRSDeSIiIiIijWIwT0RERESkUQzmiYiIiIg0isE8EREREZFG+bi7AYMhIgCAlpYWN7eEiIiIiGjoqPGtGu/2R9PBfGtrKwAgLi7OzS0hIiIiIhp6ra2tCAkJ6Xe/QW4U7nswm82Gc+fOISgoCAaDYdg/v6WlBXFxcaivr0dwcPCwfz65F/t/ZGP/j2zs/5GN/T+yDVf/iwhaW1sRHR0NL6/+M+M1PTLv5eWF2NhYdzcDwcHB/GMewdj/Ixv7f2Rj/49s7P+RbTj6/3oj8ipOgCUiIiIi0igG80REREREGsVgfhBMJhOef/55mEwmdzeF3ID9P7Kx/0c29v/Ixv4f2Tyt/zU9AZaIiIiIaCTjyDwRERERkUYxmCciIiIi0igG80REREREGsVgnoiIiIhIoxjM36TXX38d48aNg5+fH9LS0vDJJ5+4u0nkAvn5+bjjjjsQFBSEyMhIPPjggzh69KjDMSKCF154AdHR0TCbzZg9eza++uorN7WYXCk/Px8GgwG5ubn2bex/fTt79iyWLl2K8PBw+Pv74/bbb0dlZaV9P/tfvzo7O/Gb3/wG48aNg9lsRmJiItatWwebzWY/hv2vL3v37sUPfvADREdHw2Aw4J///KfDfmf6+9q1a3jiiScQERGBgIAALFq0CGfOnHFpuxnM34S3334bubm5WLt2LaqqqnDPPfdg/vz5qKurc3fTaIiVl5djxYoVqKioQFlZGTo7OzF37lxcuXLFfsyGDRuwadMmFBYW4uDBg7BYLMjMzERra6sbW05D7eDBg9i2bRtSU1MdtrP/9au5uRnp6enw9fXFv/71Lxw5cgQFBQUYNWqU/Rj2v369/PLL2Lp1KwoLC1FTU4MNGzZg48aNeO211+zHsP/15cqVK5gyZQoKCwv73O9Mf+fm5qKkpATFxcXYt28fvvvuOzzwwAOwWq2ua7jQgN15553y+OOPO2xLTk6W5557zk0touHS1NQkAKS8vFxERGw2m1gsFnnppZfsx/zvf/+TkJAQ2bp1q7uaSUOstbVVJk6cKGVlZZKRkSE5OTkiwv7Xu2effVZmzZrV7372v74tXLhQHnvsMYdtP/rRj2Tp0qUiwv7XOwBSUlJif+1Mf1+6dEl8fX2luLjYfszZs2fFy8tLPvzwQ5e1lSPzA9Te3o7KykrMnTvXYfvcuXOxf/9+N7WKhsvly5cBAGFhYQCAkydPorGx0eF8MJlMyMjI4PmgIytWrMDChQtx//33O2xn/+vbu+++i+nTp+Phhx9GZGQkpk6diu3bt9v3s//1bdasWdi1axdqa2sBAP/973+xb98+LFiwAAD7f6Rxpr8rKyvR0dHhcEx0dDQmTZrk0nPCx2XvrFPnz5+H1WpFVFSUw/aoqCg0Nja6qVU0HEQETz31FGbNmoVJkyYBgL3P+zofTp8+PextpKFXXFyMQ4cO4eDBg732sf/17cSJE9iyZQueeuop/PrXv8Znn32GVatWwWQyITs7m/2vc88++ywuX76M5ORkeHt7w2q1Ii8vD4sXLwbAv/+Rxpn+bmxshNFoRGhoaK9jXBkjMpi/SQaDweG1iPTaRvqycuVKfPHFF9i3b1+vfTwf9Km+vh45OTkoLS2Fn59fv8ex//XJZrNh+vTpWL9+PQBg6tSp+Oqrr7BlyxZkZ2fbj2P/69Pbb7+NN998E3/7299w2223obq6Grm5uYiOjsayZcvsx7H/R5ab6W9XnxNMsxmgiIgIeHt797rDampq6nW3RvrxxBNP4N1338Xu3bsRGxtr326xWACA54NOVVZWoqmpCWlpafDx8YGPjw/Ky8vx6quvwsfHx97H7H99GjNmDFJSUhy23XrrrfZiB/z717dnnnkGzz33HH784x9j8uTJ+MlPfoInn3wS+fn5ANj/I40z/W2xWNDe3o7m5uZ+j3EFBvMDZDQakZaWhrKyMoftZWVlmDlzpptaRa4iIli5ciV27tyJjz/+GOPGjXPYP27cOFgsFofzob29HeXl5TwfdGDOnDk4fPgwqqur7T/Tp09HVlYWqqurkZiYyP7XsfT09F6laGtraxEfHw+Af/96d/XqVXh5OYZJ3t7e9tKU7P+RxZn+TktLg6+vr8MxDQ0N+PLLL117Trhsaq2OFRcXi6+vr7zxxhty5MgRyc3NlYCAADl16pS7m0ZD7Be/+IWEhITInj17pKGhwf5z9epV+zEvvfSShISEyM6dO+Xw4cOyePFiGTNmjLS0tLix5eQq3avZiLD/9eyzzz4THx8fycvLk2PHjsmOHTvE399f3nzzTfsx7H/9WrZsmcTExMj7778vJ0+elJ07d0pERISsWbPGfgz7X19aW1ulqqpKqqqqBIBs2rRJqqqq5PTp0yLiXH8//vjjEhsbKx999JEcOnRI7rvvPpkyZYp0dna6rN0M5m/S5s2bJT4+XoxGo0ybNs1eqpD0BUCfP0VFRfZjbDabPP/882KxWMRkMsm9994rhw8fdl+jyaV6BvPsf3177733ZNKkSWIymSQ5OVm2bdvmsJ/9r18tLS2Sk5MjY8eOFT8/P0lMTJS1a9fKtWvX7Mew//Vl9+7dfX7nL1u2TESc6++2tjZZuXKlhIWFidlslgceeEDq6upc2m6DiIjrxv2JiIiIiMhVmDNPRERERKRRDOaJiIiIiDSKwTwRERERkUYxmCciIiIi0igG80REREREGsVgnoiIiIhIoxjMExERERFpFIN5IiIiIiKNYjBPRKQxCQkJ+MMf/uDuZgyZPXv2wGAw4NKlS+5uChGR5jCYJyLyIPX19fjpT3+K6OhoGI1GxMfHIycnBxcuXHB304bE7NmzkZub67Bt5syZaGhoQEhIiHsaRUSkYQzmiYg8xIkTJzB9+nTU1tbirbfewvHjx7F161bs2rULM2bMwMWLF93SLqvVCpvN5rL3NxqNsFgsMBgMLvsMIiK9YjBPROQhVqxYAaPRiNLSUmRkZGDs2LGYP38+PvroI5w9exZr1661H9va2oolS5YgMDAQ0dHReO211xze64UXXsDYsWNhMpkQHR2NVatW2fe1t7djzZo1iImJQUBAAO666y7s2bPHvv/Pf/4zRo0ahffffx8pKSkwmUzYvn07/Pz8eqXCrFq1ChkZGQCACxcuYPHixYiNjYW/vz8mT56Mt956y37so48+ivLycrzyyiswGAwwGAw4depUn2k2//jHP3DbbbfBZDIhISEBBQUFDp+bkJCA9evX47HHHkNQUBDGjh2Lbdu23eyvnohIu4SIiNzuwoULYjAYZP369X3uX758uYSGhorNZpP4+HgJCgqS/Px8OXr0qLz66qvi7e0tpaWlIiLyzjvvSHBwsHzwwQdy+vRpOXDggGzbts3+XkuWLJGZM2fK3r175fjx47Jx40YxmUxSW1srIiJFRUXi6+srM2fOlE8//VS+/vpr+e677yQqKkr+9Kc/2d+ns7NToqKi5I9//KOIiJw5c0Y2btwoVVVV8s0339jbVVFRISIily5dkhkzZsjy5culoaFBGhoapLOzU3bv3i0ApLm5WUREPv/8c/Hy8pJ169bJ0aNHpaioSMxmsxQVFdk/Oz4+XsLCwmTz5s1y7Ngxyc/PFy8vL6mpqRmyPiEi0gIG80REHqCiokIASElJSZ/7N23aJADk22+/lfj4ePn+97/vsP+RRx6R+fPni4hIQUGBJCUlSXt7e6/3OX78uBgMBjl79qzD9jlz5sivfvUrEVGCeQBSXV3tcMyqVavkvvvus7/+97//LUajUS5evNjv/2vBggWyevVq++uMjAzJyclxOKZnML9kyRLJzMx0OOaZZ56RlJQU++v4+HhZunSp/bXNZpPIyEjZsmVLv20hItIjptkQEWmAiACAPa98xowZDvtnzJiBmpoaAMDDDz+MtrY2JCYmYvny5SgpKUFnZycA4NChQxARJCUlITAw0P5TXl6Ob775xv5+RqMRqampDp+RlZWFPXv24Ny5cwCAHTt2YMGCBQgNDQWg5Nbn5eUhNTUV4eHhCAwMRGlpKerq6gb0f62pqUF6errDtvT0dBw7dgxWq9W+rXv7DAYDLBYLmpqaBvRZRERax2CeiMgDTJgwAQaDAUeOHOlz/9dff43Q0FBERET0+x5qoB8XF4ejR49i8+bNMJvN+OUvf4l7770XHR0dsNls8Pb2RmVlJaqrq+0/NTU1eOWVV+zvZTabe01IvfPOOzF+/HgUFxejra0NJSUlWLp0qX1/QUEBfv/732PNmjX4+OOPUV1djXnz5qG9vX1AvwsR6fXZ6s1Md76+vr3+/66cqEtE5Il83N0AIiICwsPDkZmZiddffx1PPvkkzGazfV9jYyN27NiB7Oxse5BbUVHh8O8rKiqQnJxsf202m7Fo0SIsWrQIK1asQHJyMg4fPoypU6fCarWiqakJ99xzz4DbuWTJEuzYsQOxsbHw8vLCwoUL7fs++eQT/PCHP7QH+DabDceOHcOtt95qP8ZoNDqMrvclJSUF+/btc9i2f/9+JCUlwdvbe8BtJiLSM47MExF5iMLCQly7dg3z5s3D3r17UV9fjw8//BCZmZmIiYlBXl6e/dhPP/0UGzZsQG1tLTZv3ox33nkHOTk5AJRqNG+88Qa+/PJLnDhxAn/9619hNpsRHx+PpKQkZGVlITs7Gzt37sTJkydx8OBBvPzyy/jggw9u2MasrCwcOnQIeXl5eOihh+Dn52ffN2HCBJSVlWH//v2oqanBz3/+czQ2Njr8+4SEBBw4cACnTp3C+fPn+xxJX716NXbt2oUXX3wRtbW1+Mtf/oLCwkI8/fTTN/urJSLSLQbzREQeYuLEifj8888xfvx4PPLIIxg/fjx+9rOf4Xvf+x7+85//ICwszH7s6tWrUVlZialTp+LFF19EQUEB5s2bBwAYNWoUtm/fjvT0dKSmpmLXrl147733EB4eDgAoKipCdnY2Vq9ejVtuuQWLFi3CgQMHEBcX51Qb77jjDnzxxRfIyspy2Pfb3/4W06ZNw7x58zB79mxYLBY8+OCDDsc8/fTT8Pb2RkpKCkaPHt1nPv20adPw97//HcXFxZg0aRJ+97vfYd26dXj00UcH+BslItI/g/SViEhERERERB6PI/NERERERBrFYJ6IiIiISKMYzBMRERERaRSDeSIiIiIijWIwT0RERESkUQzmiYiIiIg0isE8EREREZFGMZgnIiIiItIoBvNERERERBrFYJ6IiIiISKMYzBMRERERadT/A89+9YyoKbD/AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Function for plotting\n", "def plot_conformal_intervals(lower, upper, y_new, start=0, end=None):\n", "\n", " subset_range = slice(start, end)\n", "\n", " # Ensuring data is 1D\n", " lower = np.array(lower).flatten()\n", " upper = np.array(upper).flatten()\n", " y_new = np.array(y_new).flatten()\n", " \n", " fig, ax = plt.subplots(figsize=(9,5))\n", " \n", " plt.xlabel('Observation')\n", " plt.ylabel('Quality')\n", " plt.title('Predicted Wine Quality')\n", " plt.legend(loc='upper right')\n", "\n", " # Intervals\n", " plt.fill_between(np.arange(start, end if end is not None else len(lower)),\n", " lower[subset_range], \n", " upper[subset_range], \n", " color='red', \n", " alpha=0.3, \n", " label='Conformal Interval')\n", "\n", " # True values\n", " plt.scatter(np.arange(start, end if end is not None else len(y_new)), \n", " y_new[subset_range], \n", " color='black', \n", " s=5, \n", " label='True Values')\n", "\n", " plt.legend()\n", " plt.show()\n", "\n", "# Plot\n", "plot_conformal_intervals(lower_bounds, upper_bounds, y_new, start=0, end=100)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.18" } }, "nbformat": 4, "nbformat_minor": 5 }